Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24905
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTHOELEN, Ronald-
dc.contributor.advisorWAGNER, Patrick-
dc.contributor.advisorIngebrandt, Sven-
dc.contributor.authorDELLE, Lotta-
dc.date.accessioned2017-10-03T13:48:49Z-
dc.date.available2017-10-03T13:48:49Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/1942/24905-
dc.description.abstractThe development of electronic devices for molecular detection has revolutionized the sensors technology and its application in different fields such as quality control of consumer products, pollution monitoring and medical diagnostics. Molecular sensing techniques based on electronic detection principles are advantageous by providing faster results and avoiding extensive labelling processes used in optical detection techniques. With the possibility of integrating portable readout methods, electrical sensors can be deployed for point-of-care solutions. In recent years, discovery of new frontiers in nanotechnology has critically influenced the application of electrical sensing techniques especially for biomedical applications. Development of new nanostructuring techniques and discovery of new nanomaterials with excellent electrical properties and large surface-to-volume ratio has led to the development of high-performance miniaturized biosensor platforms with sensitivities down to a few molecules. Out of many different types of electrical biosensors, microelectrode arrays (MEAs) have been one of the prominent candidates for the detection of biomolecules using impedimetric measurement techniques. MEAs have also been deployed for recording biosignalling processes from living systems such as cells using electrical cell-substrate impedance sensing (ECIS) and similar methods. The sensor performance of such platforms is closely related to the configuration of MEA devices such as geometry, number and size of the electrodes. Few examples of improving the performance of such devices include engineering the microelectrode surfaces in order to increase the surface area or to implement novel sensor principles such as molecularly imprinted polymers (MIPs) etc. However, the micron-size electrode architectures in MEAs pose fundamental limitations such as low surface-to-volume ratio for the transducers and narrower impedance spectroscopy operational ranges. In this thesis, novel methods to deal with the limitations affecting the device performance related to the size and configuration of electrodes have been worked out. In the first part of the thesis, a new nanofabrication process based on nanoimprint lithography (NIL) was established for the development of high aspect ratio metal electrodes in the nanoscale regimes using combination of nanoimprint and photolithography methods. The combined nanofabrication process was further optimized for wafer scale production of sensor chips containing nanoelectrode arrays (NEAs). Photolithography processes were used for the passivation of NEAs for liquid operations and characterized using state-of-theart structural and electronic characterization methods. Sensor chips were prepared with systematic variation in nanoelectrode configurations with parameters such as aspect-ratio and number of interdigitated electrodes. Optimized configurations exhibiting superior sensing characteristics such as an increase of dynamic range from 10 nM to 100 nM for sensing operations by comparing nano- and microelectrodes. Here, the devices were used for label-free sensing of DNA molecules. The sensing trials reveal the detection of a very small quantity of biomolecules in a small sample volume, study of faster electrochemical reactions, short response time and provide a sufficient level of sensitivity with a major increase in pattern density. In the second part of the thesis, NEAs were used for the fabrication of fieldeffect based devices using graphene as immobilization platform for receptor molecules. Chemical vapor deposited (CVD) grown graphene was transferred onto the NEAs by using an all organic polymer based transfer process yielding graphene devices with highly clean surfaces. The devices were structurally and electronically characterized using field-effect measurements in liquids followed with deployment as impedimetric biosensors for the label-free detection of the cardiac biomarker molecules myeloperoxidase and fatty-acid-binding protein in buffer solution via antigen/antibody interaction. The dynamic range of the calibration curve is covering the clinical relevant concentration of 60 ng/ml for myeloperoxidase and 19 ng/ml for fatty-acid-binding protein and the range beyond these concentrations. Furthermore, a novel biosensor platform was realized using graphene oxide as a transducer material in order to characterize cell-substrate interactions with HEK-293 cells and antibody-antigen binding events for the detection of histamine. Here, solution derived graphene oxide was used for the fabrication of centimeterlong high surface-area conductive lines. Interfacing of living cells with these graphene oxide lines and subsequent alignment of living cells along the conductive GO lines as well as detection of histamine in liquid was successfully demonstrated suggesting for potential advantages of such alternative platforms for biosensor applications. All in all, new approaches for the submicrometer structuring of metal were performed with NIL, which are capable to achieve large areas of nanostructures. The nanomaterials graphene and graphene oxide were used in a variety of labelfree biosensing schemes, where organization of those into controlled surface architectures was essential for the successful realization of the sensing effect.-
dc.description.sponsorshipStiftung Rheinland Pfalz für Innovation-
dc.language.isoen-
dc.subject.othernanoimprint lithography; graphene; graphene oxide; biosensors;-
dc.titleAdvancing the performance of scalable nanoelectrochemical transducers: Nanoimprint fabrication, 2D material integration and biosensing optimization-
dc.typeTheses and Dissertations-
local.format.pages145-
local.bibliographicCitation.jcatT1-
dc.relation.references[1] Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S.: Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics 16 (2001), No. 1-2, p. 121–131 [2] Cederquist, K. B.; Kelley, S. O.: Nanostructured biomolecular detectors: pushing performance at the nanoscale: Synthetic biology / Analytical techniques. Current Opinion in Chemical Biology 16 (2012), No. 3–4, p. 415–421 [3] Choi, S.; Goryll, M.; Sin, L. Y. M.; Wong, P. K.; Chae, J.: Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluidics and Nanofluidics 10 (2011), No. 2, p. 231–247 [4] Daniels, J. S.; Pourmand, N.: Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19 (2007), No. 12, p. 1239–1257 [5] Berdat, D.; Martin Rodríguez, A. C.; Herrera, F.; Gijs, M. A. M.: Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell. Labon a Chip 8 (2008), No. 2, p. 302–308 [6] Goral, V. N.; Zaytseva, N. V.; Baeumner, A. J.: Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. Lab on a Chip (2006), No. 3, p. 414–421 [7] Figure: Comparability of size between nanostructure and bio-recognition element. Version: 2017 [8] Cohen, A. E.; Kunz, R. R.: Large-area interdigitated array microelectrodes for electrochemical sensing. Sensors and Actuators B: Chemical 62 (2000), No. 1, p. 23–29 [9] Morf, W. E.: Theoretical treatment of the amperometric current response of multiple microelectrode arrays. Analytica Chimica Acta 330 (1996), No. 2-3, p. 139–149 [10] Stulík, K.; Amatore, C.; Holub, K.; Marecek, V.; Kutner, W.: Microelectrodes. Definitions, characterization, and applications. Pure and Applied Chemistry 72 (2000), No. 8, p. 1365–3075 [11] Beck, M.: Nanoelectrochemical transducers for (bio-) chemical sensor applications fabricated by nanoimprint lithography. Microelectronic Engineering 73-74 (2004), p. 837–842 [12] Chou, S. Y.: Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14 (1996), No. 6, p. 4129–4133 [13] Chen, Y.: Applications of nanoimprint lithography/hot embossing: A review. Applied Physics A 121 (2015), No. 2, p. 451–465 [14] Jung, G.-Y.; Li, Z.; Wu, W.; Chen, Y.; Olynick, D. L.; Wang, S.-Y.; Tong, W. M.; Williams, R. S.: Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir: ACS Journal of Surfaces and Colloids 21 (2005), No. 4, p. 1158–1161 [15] Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L.; Zhuang, L.: Sub-10 nm imprint lithography and applications: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15 (1997), No. 6, p. 2897–2904 [16] Martinez-Rivas, A.; Carcenac, F.; Saya, D.; Séverac, C.; Nicu, L.; Vieu, C.: Wafer scale interdigitated nanoelectrode devices functionalized using a MEMS-based deposition system. Nanotechnology 23 (2012), No. 10, p. 105302–105306 [17] Skjolding, L. H. D.; Spegel, C.; Ribayrol, A.; Emnéus, J.; Montelius, L.: Characterisation of nano-interdigitated electrodes. Journal of Physics: Conference Series 100 (2008), No. 5, p. 1–4 [18] Zou, Z.; Kai, J.; Rust, M. J.; Han, J.; Ahn, C. H.: Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A: Physical 136 (2007), No. 2, p. 518–526 [19] van Gerwen, P.; Laureyn, W.; Laureys, W.; Huyberechts, G.; Beeck, M. op d.; Baert, K.; Suls, J.; Sansen, W.; Jacobs, P.; Hermans, L.; Mertens, R.: Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B: Chemical 49 (1998), No. 1–2, p. 73–80 [20] Montelius, L.; Heidari, B.; Graczyk, M.; Maximov, I.; Sarwe, E.-L.; Ling, T.: Nanoimprint- and UV-lithography: mix&match process for fabrication of interdigitated nanobiosensors. Microelectronic Engineering 53 (2000), No. 1-4, p. 521–524 [21] Beck, M.; Persson, F.; Carlberg, P.; Graczyk, M.; Maximov, I.; Ling, T. G. I.; Montelius, L.: Nanoelectrochemical transducers for (bio-) chemical sensor applications fabricated by nanoimprint lithography: Micro and Nano Engineering 2003. Microelectronic Engineering 73–74 (2004), No. 0, p. 837–842 [22] Soleymani, L.; Fang, Z.; Sargent, E. H.; Kelley, S. O.: Programming the detection limits of biosensors through controlled nanostructuring. Nature Nanotechnology 4 (2009), No. 12, p. 844–848 [23] Gun, J.; Schöning, M. J.; Abouzar, M. H.; Poghossian, A.; Katz, E.: Fieldeffect nanoparticle-based glucose sensor on a chip: amplification effect of coimmobilized redox species. Electroanalysis 20 (2008), No. 16, p. 1748– 1753 [24] Gun, J.; Rizkov, D.; Lev, O.; Abouzar, M. H.; Poghossian, A.; Schöning, M. J.: Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing. Microchimica Acta 164 (2009), No. 3-4, p. 395–404 [25] Wang, J.: Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17 (2005), No. 1, p. 7–14 [26] Patolsky, F.; Zheng, G.; Lieber, C. M.: Nanowire-based biosensors. Analytical Chemistry 78 (2006), No. 13, p. 4260–4269 [27] Wagner, P.; Doll, T.; Schöning, M. J.; Vu, X. T.; Stockmann, R.; Wolfrum, B.; Offenhäusser, A.; Ingebrandt, S.: Fabrication and application of a microfluidic-embedded silicon nanowire biosensor chip. Physica Status Solidi A 207 (2010), No. 4, p. 850–857 [28] Yasuhide Ohno; Kenzo Maehashi; Kazuhiko Matsumoto: Chemical and biological sensing applications based on graphene field-effect transistors. Biosensors and Bioelectronics 26 (2010), No. 4, p. 1727–1730 [29] Wang, J.: Nanomaterial-based electrochemical biosensors. The Analyst 130 (2005), No. 4, p. 421 [30] Pumera, M.: Graphene in biosensing. Materials Today 14 (2011), No. 7-8, p. 308–315 [31] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.: Electric field effect in atomically thin carbon films. Science 306 (2004), No. 5696, p. 666–669 [32] Geim, A. K.; Novoselov, K. S.: The rise of graphene. Nature Materials 6 (2007), No. 3, p. 183–191 [33] Cagnin, S.; Caraballo, M.; Guiducci, C.; Martini, P.; Ross, M.; Santaana, M.; Danley, D.; West, T.; Lanfranchi, G.: Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors (Basel, Switzerland) 9 (2009), No. 4, p. 3122–3148 [34] Dong, X.; Shi, Y.; Huang, W.; Chen, P.; Li, L.-J.: Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Advanced Materials 22 (2010), No. 14, p. 1649–1653 [35] Bonanni, A.; Pumera, M.: Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5 (2011), No. 3, p. 2356–2361 [36] Berger, C.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312 (2006), No. 5777, p. 1191–1196 [37] Zhou, Y.; Loh, K. P.: Making patterns on graphene. Advanced Materials 22 (2010), No. 32, p. 3615–3620 [38] Bergmair, I.; Hackl, W.; Losurdo, M.; Helgert, C.; Isic, G.; Rohn, M.; Jakovljevic, M. M.; Mueller, T.; Giangregorio, M.; Kley, E.-B.; Fromherz, T.; Gajic, R.; Pertsch, T.; Bruno, G.; Muehlberger, M.: Nano- and microstructuring of graphene using UV-NIL. Nanotechnology 23 (2012), No. 33, p. 335301 [39] Lee, Y.-Y.; Chong, K. S. L.; Goh, S.-H.; Ng, A. M. H.; Kunnavakkam, M. V.; Hee, C.-L.; Xu, Y.; Tantang, H.; Su, C.-Y.; Li, L.-J.: Scalable nanoimprint patterning of thin graphitic oxide sheets and in situ reduction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29 (2011), No. 1, p. 011023 [40] Delle, L. E.; Lanche, R.; Law, J. K.-Y.; Weil, M.; Vu, X. T.; Wagner, P.; Ingebrandt, S.: Reduced graphene oxide micropatterns as an interface for adherent cells. Physica Status Solidi A 210 (2013), No. 5, p. 975–982 [41] Song, J.; Kam, F.-Y.; Png, R.-Q.; Seah, W.-L.; Zhuo, J.-M.; Lim, G.-K.; Ho, P. K. H.; Chua, L.-L.: A general method for transferring graphene onto soft surfaces. Nature Nanotechnology 8 (2013), No. 5, p. 356–362 [42] De Leo, M.; Kuhn, A.; Ugo, P.: 3D-ensembles of gold nanowires: preparation, characterization and electroanalytical peculiarities. Electroanalysis 19 (2007), No. 2-3, p. 227–236 [43] Heim, M.; Reculusa, S.; Ravaine, S.; Kuhn, A.: Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures. Advanced Functional Materials 22 (2012), No. 3, p. 538–545 [44] Silvestrini, M.; Schiavuta, P.; Scopece, P.; Pecchielan, G.; Moretto, L. M.; Ugo, P.: Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins. Electrochimica Acta 56 (2011), No. 22, p. 7718–7724 [45] Mucelli, S. P.; Zamuner, M.; Tormen, M.; Stanta, G.; Ugo, P.: Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Biosensors and Bioelectronics 23 (2008), No. 12, p. 1900–1903 [46] Godino, N.; Borrisé, X.; Muñoz, F. X.; del Campo, F. J.; Compton, R. G.: Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. The Journal of Physical Chemistry C 113 (2009), No. 25, p. 11119–11125 [47] Ongaro, M.; Ugo, P.: Bioelectroanalysis with nanoelectrode ensembles and arrays. Analytical and Bioanalytical Chemistry 405 (2013), No. 11, p. 3715–3729 [48] Arrigan, D. W. M.: Nanoelectrodes, nanoelectrode arrays and their applications. The Analyst 129 (2004), No. 12, p. 1157 [49] Zoski, C. G.: Ultramicroelectrodes: design, fabrication, and characterization.Electroanalysis 14 (2002), No. 15-16, p. 1041–1051 [50] Huaqing Li; Nianqiang Wu: A large-area nanoscale gold hemisphere pattern as a nanoelectrode array. Nanotechnology 19 (2008), No. 27, p. 275301 [51] Wightman, R. M.; Wipf, D. O.: Voltammetry at ultramicroelectrodes. Electroanalytical Chemistry 15 (1989), p. 267–353 [52] Forster, R. J.: Microelectrodes: New dimensions in electrochemistry. Chemical Society Reviews 23 (1994), No. 4, p. 289 [53] Penner, R. M.; Heben, M. J.; Longin, T. L.; Lewis, N. S.: Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 250 (1990), No. 4984, p. 1118–1121 [54] Penner, R. M.; Heben, M. J.; Lewis, N. S.: Preparation and electrochemical characterization of conical and hemispherical ultramicroelectrodes. Analytical Chemistry 61 (1989), No. 15, p. 1630–1636 [55] Mirkin, M. V.; Fan, F.-R. F.; Bard, A. J.: Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. Journal of Electroanalytical Chemistry 328 (1992), No. 1-2, p. 47–62 [56] Morris, R. B.; Franta, D. J.; White, H. S.: Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: Breakdown of transport equations at very small electrodes. The Journal of Physical Chemistry 91 (1987), No. 13, p. 3559–3564 [57] Seibold, J.; Scott, E. R.; White, H. S.: Diffusional transport to nanoscopic band electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 264 (1989), No. 1-2, p. 281–289 [58] Schönenberger, C.; van der Zande, B. M. I.; Fokkink, L. G. J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U.: Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and Morphology. The Journal of Physical Chemistry B 101 (1997), No. 28, p. 5497–5505 [59] Leo, M. de; Pereira, F. C.; Moretto, L. M.; Scopece, P.; Polizzi, S.; Ugo, P.: Towards a better understanding of gold electroless deposition in tracketched templates. Chemistry of Materials 19 (2007), No. 24, p. 5955–5964 [60] Karimian, N.; Moretto, L. M.; Ugo, P.: Nanobiosensing with Arrays and Ensembles of Nanoelectrodes. Sensors (Basel, Switzerland) 17 (2016), No. 1 [61] Menon, V. P.; Martin, C. R.: Fabrication and evaluation of nanoelectrode ensembles. Analytical Chemistry 67 (1995), No. 13, p. 1920–1928 [62] Penner, R. M.; Martin, C. R.: Preparation and electrochemical characterization of ultramicroelectrode ensembles. Analytical Chemistry 59 (1987), No. 21, p. 2625–2630 [63] Gilliam, R. J.; Thorpe, S. J.; Kirk, D. W.: A nucleation and growth study of gold nanowires and nanotubes in polymeric membranes. Journal of Applied Electrochemistry 37 (2006), No. 2, p. 233–239 [64] Errachid, A.; Mills, C. A.; Pla-Roca, M.; Lopez, M. J.; Villanueva, G.; Bausells, J.; Crespo, E.; Teixidor, F.; Samitier, J.: Focused ion beam production of nanoelectrode arrays. Materials Science and Engineering: C 28 (2008), No. 5-6, p. 777–780 [65] Lanyon, Y. H.; Marzi, G. de; Watson, Y. E.; Quinn, A. J.; Gleeson, J. P.; Redmond, G.; Arrigan, D. W. M.: Fabrication of nanopore array electrodes by focused ion beam milling. Analytical Chemistry 79 (2007), No. 8, p. 3048–3055 [66] Sandison, M. E.; Cooper, J. M.: Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. Lab on a Chip 6 (2006), No. 8, p. 1020–1025 [67] Losilla, N. S.; Oxtoby, N. S.; Martinez, J.; Garcia, F.; Garcia, R.; Mas-Torrent, M.; Veciana, J.; Rovira, C.: Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology 19 (2008), No. 45 (455308), p. 1–6 [68] Albonetti, C.; Martinez, J.; Losilla, N. S.; Greco, P.; Cavallini, M.; Borgatti, F.; Montecchi, M.; Pasquali, L.; Garcia, R.; Biscarini, F.: Parallel-local anodic oxidation of silicon surfaces by soft stamps. Nanotechnology 19 (2008), No. 43 (435303), p. 1–9 [69] Lan, H.; Ding, Y.; Liu, H.; Lu, B.: Review of the wafer stage for nanoimprint lithography. Microelectronic Engineering 84 (2007), No. 4, p. 684–688 [70] Guo, J.: Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics 37 (2004), No. 11, p. 123–141 [71] Haisma, J.: Mold-assisted nanolithography: A process for reliable pattern replication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14 (1996), No. 6, p. 4124–4128 [72] Gröning, P.: “Self-thickness-limited” plasma polymerization of an ultrathin antiadhesive film. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 14 (1996), No. 6, p. 3043–3048 [73] Jeon, N. L.; Hu, J.; Whitesides, G.; Erhardt, M. K.; Nuzzo, R. G.: Fabrication of Silicon MOSFETs Using Soft Lithography. Advanced Materials 10 (1998), No. 17, p. 1466–1469 [74] Yoshikawa, H.; Taniguchi, J.; Tazaki, G.; Zento, T.: Fabrication of highaspect- ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectronic Engineering 112 (2013), p. 273–277 [75] Abe, H.; Yoneda, M.; Fujiwara, N.: Developments of plasma etching technology for fabricating semiconductor devices. Japanese Journal of Applied Physics 47 (2008), No. 3R, p. 1435–1455 [76] Wu, B.; Kumar, A.; Pamarthy, S.: High aspect ratio silicon etch: A review. Journal of Applied Physics 108 (2010), No. 5 (051101), p. 1–20 [77] Sun, X.: Multilayer resist methods for nanoimprint lithography on nonflat surfaces. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16 (1998), No. 6 (3922), p. 1–9 [78] Kim, J. M.: Reactive ion etching techniques for silicon sidewall angle control in microengineering. Journal of The Electrochemical Society 139 (1992), No. 6, p. 1700–1705 [79] Carlberg, P.; Graczyk, M.; Sarwe, E.-L.; Maximov, I.; Beck, M.; Montelius, L.: Lift-off process for nanoimprint lithography: Proceedings of the 28th International Conference on Micro- and Nano-Engineering. Microelectronic Engineering 67–68 (2003), No. 0, p. 203–207 [80] Chen, Y.; Macintyre, D. S.; Thoms, S.: A non-destructive method for the removal of residual resist in imprinted patterns. Microelectronic Engineering 67-68 (2003), p. 245–251 [81] Tao, J.: Study of pattern placement error by thermal expansions in nanoimprint lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS 5 (2006), No. 1 (011002), p. 3–5 [82] Tao, J.; Chen, Y.; Zhao, X.; Malik, A.; Cui, Z.: Room temperature nanoimprint lithography using a bilayer of HSQ/PMMA resist stack. Microelectronic Engineering 78-79 (2005), p. 665–669 [83] Merkoçi, A. (Eds.): Biosensing using nanomaterials. Hoboken, N.J: Wiley, (2009) (Wiley series on comprehensive nanoscience and nanotechnology). – ISBN 9780470183090 [84] Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.: Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5 (2010), No. 4, p. 351–372 [85] Segawa, Y.; Ito, H.; Itami, K.: Structurally uniform and atomically precise carbon nanostructures. Nature Reviews Materials 1 (2016), No. 1 (15002), p. 1–6 [86] Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Advances in Colloid and Interface Science 170 (2012), No. 1-2, p. 2–27 [87] Lim, S. A.; Ahmed, M. U.: Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review. RSC Advances 6 (2016), No. 30, p. 24995–25014 [88] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, N.Y.) 321 (2008), No. 5887, p. 385–388 [89] Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A.: Graphene, the new nanocarbon. Journal of Materials Chemistry 19 (2009), No. 17, p. 2457–2469 [90] Park, S.; Ruoff, R. S.: Chemical methods for the production of graphenes. Nature Nanotechnology 4 (2009), No. 4, p. 217–224 [91] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; S; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3 (2008), No. 9, p. 563– 568 [92] Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L.: Ultrahigh electron mobility in suspended graphene. Solid State Communications 146 (2008), No. 9-10, p. 351–355 [93] Hummers, W. S.; Offeman, R. E.: Preparation of graphitic oxide. Journal of the American Chemical Society 80 (1958), No. 6, p. 1339 [94] Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S.: Chemical analysis of graphene oxide films after heat and chemical treatments by Xray photoelectron and Micro-Raman spectroscopy. Carbon 47 (2009), No. 1, p. 145–152 [95] Gomez-Navarro, C.; Weitz, R. T.; Bittner, A.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters 7 (2007), No. 11, p. 3499–3503 [96] Dreyer; Park, S.; Bielawski, C. W.; Ruoff, R. S.: The chemistry of graphene oxide. Chemical Society Reviews 39 (2010), No. 1, p. 228–240 [97] Kauppila, J.; Kunnas, P.; Damlin, P.; Viinikanoja, A.; Kvarnström, C.: Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochimica Acta 89 (2013), p. 84–89 [98] Gomez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U.: Atomic structure of reduced graphene oxide. Nano Letters 10 (2010), No. 4, p. 1144–1148 [99] Mattevi, C.; Kim, H.; Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21 (2011), No. 10, p. 3324–3334 [100] Colombo, L.; Wallace, R. M.; Ruoff, R. S.: Graphene growth and device integration. Proceedings of the IEEE 101 (2013), No. 7, p. 1536–1556 [101] Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D. A.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469 (2011), No. 7330, p. 389–392 [102] Pänke, O.; Balkenhohl, T.; Kafka, J.; Schäfer, D.; Lisdat, F.: Impedance Spectroscopy and Biosensing. Renneberg, R. (Eds.); Lisdat, F. (Eds.): Biosensing for the 21st Century 109. Springer Berlin / Heidelberg, (2008). – ISBN 978–3–540–75200–4, p. 195–237 [103] Lisdat, F.; Schäfer, D.: The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry 391 (2008), No. 5, p. 1555–1567 [104] Lucarelli, F.; Tombelli, S.; Minunni, M.; Marrazza, G.; Mascini, M.: Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta 609 (2008), No. 2, p. 139–159 [105] Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors and Bioelectronics 21 (2006), No. 10, p. 1887–1892 [106] Kleo, K.; Kapp, A.; Ascher, L.; Lisdat, F.: Detection of vaccinia virus DNA by quartz crystal microbalance. Analytical Biochemistry 418 (2011), No. 2, p. 260–266 [107] van Grinsven, B.; Vanden Bon, N.; Strauven, H.; Grieten, L.; Murib, M.; Monroy, K. L. J.; Janssens, S. D.; Haenen, K.; Schöning, M. J.; Vermeeren, V.; Ameloot, M.; Michiels, L.; Thoelen, R.; Ceuninck, W. de; Wagner, P.: Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA. ACS Nano 6 (2012), No. 3, p. 2712–2721 [108] Pollet, J.; Delport, F.; Janssen, K. P. F.; Jans, K.; Maes, G.; Pfeiffer, H.; Wevers, M.; Lammertyn, J.: Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosensors and Bioelectronics 25 (2009), No. 4, p. 864–869 [109] Palecek, E.; Bartošík, M.: Electrochemistry of nucleic acids. Chemical Reviews 112 (2012), No. 6, p. 3427–3481 [110] Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M. J.: Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical 111-112 (2005), p. 470–480 [111] Zhao, X.; Tapec-Dytioco, R.; Tan, W.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society 125 (2003), No. 38, p. 11474–11475 [112] Xu, Y.; Cai, H.; He, P.-G.; Fang, Y.-Z.: Probing DNA hybridization by impedance measurement based on CdS-oligonucleotide nanoconjugates. Electroanalysis 16 (2004), No. 12, p. 150–155 [113] Wang, J.; Jiang, M.; Fortes, A.; Mukherjee, B.: New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films. Analytica Chimica Acta 402 (1999), No. 1-2, p. 7–12 [114] Riedel, M.; Kartchemnik, J.; Schöning, M. J.; Lisdat, F.: Impedimetric DNA detection - steps forward to sensorial application. Analytical Chemistry 86 (2014), No. 15, p. 7867–7874 [115] Yang, Z.; Min Zhou, D.: Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clinical Biochemistry 39 (2006), No. 8, p. 771–780 [116] Stubbs, P.; Collinson, P. O.: Point-of-care testing: A cardiologist’s view. Clinica Chimica Acta 311 (2001), No. 1, p. 57–61 [117] Martín-Ventura, J. L.; Blanco-Colio, L. M.; Tuñón, J.; Muñoz-García, B.; Madrigal-Matute, J.; Moreno, J. A.; Céniga, M. V.; Egido, J.: Biomarkers in cardiovascular medicine. Revista Española de Cardiología (English Edition) 62 (2009), No. 6, p. 677–688 [118] Anderson, L.: Candidate-based proteomics in the search for biomarkers of cardiovascular disease. The Journal of Physiology 563 (2005), No. 1, p. 23–60 [119] Figure: Biomarker released into blood stream. Version: 2017 [120] Qureshi, A.; Gurbuz, Y.; Niazi, J. H.: Biosensors for cardiac biomarkers detection: A review. Sensors and Actuators B: Chemical 171-172 (2012), p. 62–76 [121] Ruiz, O. N.; Fernando, K. A. S.; Wang, B.; Brown, N. A.; Luo, P. G.; McNamara, N. D.; Vangsness, M.; Sun, Y.-P.; Bunker, C. E.: Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5 (2011), No. 10, p. 8100–8107 [122] Agarwal, S.; Zhou, X.; Ye, F.; He, Q.; Chen, G. C. K.; Soo, J.; Boey, F.; Zhang, H.; Chen, P.: Interfacing live cells with nanocarbon substrates. Langmuir 26 (2010), No. 4, p. 2244–2247 [123] Nguyen, P.; Berry, V.: Graphene interfaced with biological cells: opportunities and challenges. The Journal of Physical Chemistry Letters 3 (2012), No. 8, p. 1024–1029 [124] Lehane, L.; Olley, J.: Histamine fish poisoning revisited. International Journal of Food Microbiology 58 (2000), No. 1–2, p. 1–37 [125] Gustiananda, M.; Andreoni, A.; Tabares, L. C.; Tepper, Armand W. J. W.; Fortunato, L.; Aartsma, T. J.; Canters, G. W.: Sensitive detection of histamine using fluorescently labeled oxido-reductases. Biosensors and Bioelectronics 31 (2012), No. 1, p. 419–425 [126] Peeters, M.; Troost, F. J.; Mingels, R. H.; Welsch, T.; van Grinsven, B.; Vranken, T.; Ingebrandt, S.; Thoelen, R.; Cleij, T. J.; Wagner, P.: Impedimetric detection of histamine in bowel fluids using synthetic receptors with pH-optimized binding characteristics. Analytical Chemistry 85 (2013), No. 3, p. 1475–1483 [127] Ujike, A.; Ishikawa, Y.; Ono, M.; Yuasa, T.; Yoshino, T.; Fukumoto, M.; Ravetch, J. V.; Takai, T.: Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. The Journal of Experimental Medicine 189 (1999), No. 10, p. 1573–1579 [128] Keyzer, J. J.; Wolthers, B. G.; Muskiet, F.; Breukelman, H.; Kauffman, H. F.; de Vries, K.: Measurement of plasma histamine by stable isotope dilution gas chromatography-mass spectrometry: Methodology and normal values. Analytical Biochemistry 139 (1984), No. 2, p. 474–481 [129] Yoshitake, T.; Ichinose, F.; Yoshida, H.; Todoroki, K.-i.; Kehr, J.; Inoue, O.; Nohta, H.; Yamaguchi, M.: A sensitive and selective determination method of histamine by HPLC with intramolecular excimer-forming derivatization and fluorescence detection. Biomedical Chromatography 17 (2003), No. 8, p. 509–516 [130] Bitziou, E.; O’Hare, D.; Patel, B. A.: Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach. Analytical Chemistry 80 (2008), No. 22, p. 8733–8740 [131] Bitziou, E.; Patel, B. A.: Simultaneous detection of gastric acid and histamine release to unravel the regulation of acid secretion from the guinea pig stomach. American Journal of Physiology 303 (2012), No. 3, p. G396–403 [132] Delle, L. E.; Huck, C.; Bäcker, M.; Müller, F.; Grandthyll, S.; Jacobs, K.; Lilischkis, R.; Vu, X. T.; Schöning, M. J.; Wagner, P.; Thoelen, R.; Weil, M.; Ingebrandt, S.: Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide. Physica Status Solidi A 212 (2015), No. 6, p. 1327–1334 [133] Kim, E.; Xia, Y.; Whitesides, G. M.: Micromolding in capillaries: applications in materials science. Journal of the American Chemical Society 118 (1996), No. 24, p. 5722–5731 [134] Delle, L. E.; Pachauri, V.; Sharma, S.; Shaforost, O.; Ma, H.; Adabi, M.; Lilischkis, R.; Wagner, P.; Thoelen, R.; Klein, N.; O’Kennedy, R.; Ingebrandt, S.: scFv modified Graphene coated IDE-arrays for label-free screening of cardiovascular disease biomarkers in physiological saline: (submitted to journal). 2017 [135] Delle, L. E.; Pachauri, V.; Vlandas, A.; Riedel, M.; Lägel, B.; Lilischkis, R.; Vu, X. T.; Wagner, P.; Thoelen, R.; Lisdat, F.; Ingebrandt, S.: Scalable fabrication and application of nanoscale IDE-arrays as multi-electrode-platform for label-free biosensing: (submitted to journal). 2017 [136] Kafka, J.; Pänke, O.; Abendroth, B.; Lisdat, F.: A label-free DNA sensor based on impedance spectroscopy. Electrochimica Acta 53 (2008), No. 25, p. 7467–7474 [137] Pänke, O.; Kirbs, A.; Lisdat, F.: Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosensors and Bioelectronics 22 (2007), No. 11, p. 2656–2662 [138] Ishimura, S.; Furuhashi, M.; Watanabe, Y.; Hoshina, K.; Fuseya, T.; Mita, T.; Okazaki, Y.; Koyama, M.; Tanaka, M.; Akasaka, H.; Ohnishi, H.; Yoshida, H.; Saitoh, S.; Miura, T.: Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PloS One 8 (2013),No. 11, p. e81318 [139] Otaki, Y.; Watanabe, T.; Takahashi, H.; Hirayama, A.; Narumi, T.; Kadowaki,S .; Honda, Y.; Arimoto, T.; Shishido, T.; Miyamoto, T.; Konta, T.; Shibata, Y.; Fukao, A.; Daimon, M.; Ueno, Y.; Kato, T.; Kayama, T.; Kubota, I.: Association of heart-type fatty acid-binding protein with cardiovascular riskfactors and all-cause mortality in the general population: the Takahata study. PloS One 9 (2014), No. 5, p. e94834 [140] Mocatta, T. J.; Pilbrow, A. P.; Cameron, V. A.; Senthilmohan, R.; Frampton, C. M.; Richards, A. M.; Winterbourn, C. C.: Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. Journal of the American College of Cardiology 49 (2007), No. 20, p. 1993–2000 [141] Esporcatte, R.; Rey, H. C. V.; Rangel, F. O. D.; Rocha, R. M.; Mendonça Filho, H. T. F. d.; Dohmann, H. F. R.; Albanesi Filho, F. M.: Valor preditivo da mieloperoxidase na identificação de pacientes de alto risco admitidos por dor torácica aguda. Arquivos Brasileiros de Cardiologia 89 (2007), No. 6 [142] Goiffon, R. J.; Martinez, S. C.; Piwnica-Worms, D.: A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma. Nature Communications 6 (2015), p. 6271 [143] Wodzig, W.; Pelsers, M.; van der Vusse, G.; Roos, W.; Glatz, J.: One-Step Enzyme-Linked Immunosorbent Assay (ELISA) for Plasma Fatty Acid-Binding Protein. Annals of Clinical Biochemistry 34 (1997), No. 3, p. 263–268-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
item.fulltextWith Fulltext-
item.contributorDELLE, Lotta-
item.accessRightsOpen Access-
item.fullcitationDELLE, Lotta (2017) Advancing the performance of scalable nanoelectrochemical transducers: Nanoimprint fabrication, 2D material integration and biosensing optimization.-
Appears in Collections:Phd Theses
Research publications
Files in This Item:
File Description SizeFormat 
PhD_Thesis_Delle.pdf8.65 MBAdobe PDFView/Open
Show simple item record

Page view(s)

34
checked on Sep 6, 2022

Download(s)

14
checked on Sep 6, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.