Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNEMETH, Balazs-
dc.contributor.authorHABER, Tom-
dc.contributor.authorLIESENBORGS, Jori-
dc.contributor.authorLAMOTTE, Wim-
dc.date.accessioned2017-10-04T09:05:53Z-
dc.date.available2017-10-04T09:05:53Z-
dc.date.issued2017-
dc.identifier.citation2017 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, p. 520-524-
dc.identifier.isbn9781538623268-
dc.identifier.issn1552-5244-
dc.identifier.urihttp://hdl.handle.net/1942/24917-
dc.description.abstractMarkov Chain Monte Carlo methods provide a tool for tackling high dimensional problems. With many-core systems readily available today, it is no surprise that leveraging parallelism in these samplers has been a subject of recent research. The focus has been on solutions for shared-memory architectures, however these perform poorly in a distributedmemory environment. This paper introduces a fully decentralized version of an affine invariant sampler. By observing that a pseudorandom number generator makes stochastic algorithms deterministic, communication is both minimized and hidden by computation. Two cases at opposite ends of the communication to-computation ratio spectrum are used during evaluation against the currently available master-slave solution, where a more than tenfold reduction in execution time is measured.-
dc.description.sponsorshipPart of the work presented in this paper was funded by Johnson & Johnson.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE International Conference on Cluster Computing-
dc.rights(C) IEEE-
dc.subject.otherMarkov Chain Monte Carlo; high performance computing; affine invariant sampling-
dc.titleDistributed Affine-Invariant MCMC Sampler-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate05-08/09/2017-
local.bibliographicCitation.conferencename2017 IEEE: International Conference on Cluster Computing (Cluster 2017)-
local.bibliographicCitation.conferenceplaceHonolulu (Hawaii), USA-
dc.identifier.epage524-
dc.identifier.spage520-
local.bibliographicCitation.jcatC1-
dc.description.notesNemeth, B (reprint author), Hasselt Univ tUL Imec, Expertise Ctr Digital Media, Martelarenlaan 42, B-3500 Hasselt, Belgium-
local.publisher.placeNew York (NY), USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/CLUSTER.2017.68-
dc.identifier.isi000413691000053-
local.bibliographicCitation.btitle2017 IEEE International Conference on Cluster Computing (CLUSTER)-
item.validationecoom 2018-
item.contributorNEMETH, Balazs-
item.contributorHABER, Tom-
item.contributorLIESENBORGS, Jori-
item.contributorLAMOTTE, Wim-
item.fullcitationNEMETH, Balazs; HABER, Tom; LIESENBORGS, Jori & LAMOTTE, Wim (2017) Distributed Affine-Invariant MCMC Sampler. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, p. 520-524.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
2326a520.pdf
  Restricted Access
Published version162.57 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.