Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25087
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDarcis, Michiel-
dc.contributor.authorLeurs, Gert-
dc.contributor.authorGeens, Kenny-
dc.contributor.authorJankelevitch, Alexandra-
dc.contributor.authorSWINKELS, Wout-
dc.contributor.authorCLAESEN, Luc-
dc.date.accessioned2017-10-23T14:23:59Z-
dc.date.available2017-10-23T14:23:59Z-
dc.date.issued2017-
dc.identifier.citationLi, Qingli; Wang, Lipo; Zhou, Mei; Sun, Li; Qiu, Song; Liu, Hongying (Ed.). Proceedings 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics CISP-BMEI 2017, IEEE Institute of Electrical and Electronics Engineers,p. 3B-13-3B-18-
dc.identifier.isbn9781538619377-
dc.identifier.urihttp://hdl.handle.net/1942/25087-
dc.description.abstractModern oncology and neurosurgery treatments often use stereotactic radiosurgery. Using linear accelerators and appropriate collimators, treatments of predefined high localized radiation doses can be concentrated in small volumes inside the patient. This can be used to treat tumors in otherwise difficult reachable zones of the patient, such as inside the head. In order to avoid unnecessary damage to surrounding healthy tissue, the treatment volume must be positioned as accurate as possible. The Winston-Lutz test is a standard test that is used in quality control procedures to verify the correct alignment of CT scan images with respect to the isocenter of the radiation equipment. The Winston-Lutz test uses a metal Tungsten ball positioned at the isocenter of the linear accelerator to calibrate the system under various positions of the gantry and various angles of the collimator in the gantry head and patient table. In current procedures, the calibration images that are captured during the test are manually interpreted, measured on workstation screens by the medical personnel. This paper presents new automatic methods to accurately determine the center of the metal ball, based on the image center of gravity as well as the automatic detection of the center of a square radiation field around the ball. The calibration results obtained from the automatic image processing based calculations are consistent and precise with a mean difference of 0.17 mm and a standard deviation of 0.15 mm.-
dc.description.sponsorshipFWO-
dc.language.isoen-
dc.publisherIEEE Institute of Electrical and Electronics Engineers-
dc.rightsIEEE Institute of Electrical and Electronics Engineers-
dc.subject.otherWinston-Lutz test; stereotactic radiosurgery; medical image processing; CT scanning; CBCT-imaging; SRS-
dc.titleAutomated Winston-Lutz Test for Efficient Quality Control in Stereotactic Radiosurgery-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsLi, Qingli-
local.bibliographicCitation.authorsWang, Lipo-
local.bibliographicCitation.authorsZhou, Mei-
local.bibliographicCitation.authorsSun, Li-
local.bibliographicCitation.authorsQiu, Song-
local.bibliographicCitation.authorsLiu, Hongying-
local.bibliographicCitation.conferencedate14-16/10/2017-
local.bibliographicCitation.conferencename2017 10th IEEE International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2017)-
local.bibliographicCitation.conferenceplaceShanghai, China-
dc.identifier.epage3B-18-
dc.identifier.spage3B-13-
local.bibliographicCitation.jcatC1-
local.publisher.placeNew York, NY, USA-
dc.relation.references[1] K. R. Winston, W. Lutz, “Linear accelerator as a neurosurgical tool for stereotactic radiosurgery”, Neurosurgery, March 1988, Vol.22(3), pp.454-464. [2] J. Casals Farran, J.F. Calvo Ortega, M. P. Masso, S. Moragues Femenia, “CBCT-guided Winston Lutz test”, Radiotherapy and Oncology, 2014, Vol.111, pp.S257-S257, ISSN: 0167-8140, DOI: 10.1016/S0167-8140(15)31841-7. [3] Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiotherapy (SBRT), https://www.radiologyinfo.org/en/info.cfm?pg=stereotactic [4] P. B. Ravindran, “A study of Winston–Lutz test on two different electronic portal imaging devices and with low energy imaging”, Australas. Phys. Eng. Sci. Med., vol. 39, no. 3, pp. 677–685, 2016. [5] L. Dong, a Shiu, S. Tung, and a Boyer, “Verification of radiosurgery target point alignment with an electronic portal imaging device (EPID)”, Med. Phys., vol. 24, no. 2, pp. 263–267, 1997. [6] B. Winey, G. Sharp, and M. Bussière, “A fast double template convolution isocenter evaluation algorithm with subpixel accuracy”, Med. Phys., vol. 38, no. 1, pp. 223–7, 2011. [7] M. Zhang, J. Driewer, Y. Zhang, S. Zhou, and X. Zhu, “The Measurement Accuracy of Ball Bearing Center in Portal Images Using an Intensity-Weighted Centroid Method”, November 2015, pp. 273–283, 2015. [8] “Diameter of the radiation isocenter.”, http://www.wienkav.at/kav/kfj/91033454/physik/as500/as500_sphere.htm. [Accessed: 01-Mar-2017]. [9] W. Du, S. Gao, X. Wang, and R. J. Kudchadker, “Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy,” Med. Phys., vol. 39, no. 4, p. 2156, 2012. [10] DICOM, Digital Imaging and Communications in Medicine, http://dicom.nema.org [11] R. Gonzalez, R. Woods, and S. Eddins, “Representation and Description”, in Digital Image Processing Using MATLAB, 2nd ed., Knoxville, TN: Gatesmark Publishing, 2009, pp. 637–641. [12] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, “Introduction”, in Computational Geometry: Algorithms and Applications, 3rd ed., Berlin: Springer-Verlag, 2008, pp. 2–8. [13] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979. [14] Varian Medical Systems, Inc., “Clinac Technical Reference Guide”, Palo Alto, CA, februari 2006.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.isi000464407100398-
local.bibliographicCitation.btitleProceedings 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics CISP-BMEI 2017-
item.contributorDarcis, Michiel-
item.contributorLeurs, Gert-
item.contributorGeens, Kenny-
item.contributorJankelevitch, Alexandra-
item.contributorSWINKELS, Wout-
item.contributorCLAESEN, Luc-
item.fullcitationDarcis, Michiel; Leurs, Gert; Geens, Kenny; Jankelevitch, Alexandra; SWINKELS, Wout & CLAESEN, Luc (2017) Automated Winston-Lutz Test for Efficient Quality Control in Stereotactic Radiosurgery. In: Li, Qingli; Wang, Lipo; Zhou, Mei; Sun, Li; Qiu, Song; Liu, Hongying (Ed.). Proceedings 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics CISP-BMEI 2017, IEEE Institute of Electrical and Electronics Engineers,p. 3B-13-3B-18.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
P1720 Automated Winston-Lutz Test Calibration and Analysis for Stereotactic Radiosurgery.pdf
  Restricted Access
Peer-reviewed author version396.67 kBAdobe PDFView/Open    Request a copy
Automated Winston-Lutz Test for Efficient Quality Control in Stereotactic Radiosurgery - Published Version.pdf
  Restricted Access
Published version1.05 MBAdobe PDFView/Open    Request a copy
Show simple item record

Page view(s)

102
checked on Jun 29, 2022

Download(s)

88
checked on Jun 29, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.