Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2520
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPiccirillo, C-
dc.contributor.authorDavies, G-
dc.contributor.authorMainwood, A.-
dc.contributor.authorScarle, S-
dc.contributor.authorPenchina, CM-
dc.contributor.authorMollart, T. P.-
dc.contributor.authorLewis, KL-
dc.contributor.authorNESLADEK, Milos-
dc.contributor.authorREMES, Zdenek-
dc.contributor.authorPickles, CSJ-
dc.date.accessioned2007-11-15T09:19:21Z-
dc.date.available2007-11-15T09:19:21Z-
dc.date.issued2002-
dc.identifier.citationJOURNAL OF APPLIED PHYSICS, 92(2). p. 756-763-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/1942/2520-
dc.description.abstractEmpirical rules are derived that describe the temperature dependence of the infrared absorption spectra of pure diamond for photons of energy hnu=500-4000 cm(-1). We show that with increasing temperature in the range 14<T<850 K, all the features in the infrared spectrum shift to lower frequency at very similar fractional rates. The rate for all the features is, to +/-13%, Deltanu/nu=cn(E-e) where c=-0.027 and n(E-e) is the Bose-Einstein population factor with E-e=860 cm(-1). The intensities of the optical absorption involving the creation of two phonons of energies E-1 and E-2 are expected to increase with T in proportion to [1+n(E-1)][1+n(E-2)]. This expression, combined with the fractional shift rule for the energies of each mode, allows high temperature two-phonon spectra to be simulated accurately from a low temperature spectrum. The temperature dependence of the three-phonon band between 2665 and 3900 cm(-1) is precisely fitted without adjustable parameters by using the shift rule in conjunction with a modified density of three-phonon states. Absorption at 10.6 mum is shown to involve the simultaneous destruction and creation of phonons. Its strong temperature dependence in the range 300<T<800 K is accurately described, without any adjustable parameters, in terms of three main components: the destruction of one phonon of 335 cm(-1) and the creation of a second of 1275 cm(-1); the shift to lower energy of the phonons; and a three-phonon process involving the destruction of one and the creation of two phonons. The analysis demonstrates why diamond has to be effectively cooled when used for the windows of a high-power CO2 laser. (C) 2002 American Institute of Physics.-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.titleTemperature dependence of intrinsic infrared absorption in natural and chemical-vapor deposited diamond-
dc.typeJournal Contribution-
dc.identifier.epage763-
dc.identifier.issue2-
dc.identifier.spage756-
dc.identifier.volume92-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv London Kings Coll, Dept Phys, London WC2R 2LS, England. QinetiQ, Malvern WR14 3PS, Worcs, England. Univ Limburg, Inst Mat Res, B-3590 Diepenbeek, Belgium. De Beers Ind Diamonds Ltd, Ascot SL5 8BP, Berks, England.Piccirillo, C, Univ London Kings Coll, Dept Phys, London WC2R 2LS, England.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000176600000014-
item.validationecoom 2003-
item.contributorPiccirillo, C-
item.contributorDavies, G-
item.contributorMainwood, A.-
item.contributorScarle, S-
item.contributorPenchina, CM-
item.contributorMollart, T. P.-
item.contributorLewis, KL-
item.contributorNESLADEK, Milos-
item.contributorREMES, Zdenek-
item.contributorPickles, CSJ-
item.fullcitationPiccirillo, C; Davies, G; Mainwood, A.; Scarle, S; Penchina, CM; Mollart, T. P.; Lewis, KL; NESLADEK, Milos; REMES, Zdenek & Pickles, CSJ (2002) Temperature dependence of intrinsic infrared absorption in natural and chemical-vapor deposited diamond. In: JOURNAL OF APPLIED PHYSICS, 92(2). p. 756-763.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0021-8979-
crisitem.journal.eissn1089-7550-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.