Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/25329
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KARPINSKI, Stefan | - |
dc.contributor.author | POP, Sorin | - |
dc.contributor.author | Radu, Florin Adrian | - |
dc.date.accessioned | 2017-12-14T14:25:43Z | - |
dc.date.available | 2017-12-14T14:25:43Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 112(6), p. 553-577 | - |
dc.identifier.issn | 0029-5981 | - |
dc.identifier.uri | http://hdl.handle.net/1942/25329 | - |
dc.description.abstract | We present a linearization scheme for an interior penalty discontinuous Galerkin method for two phase porous media flow model which includes dynamic effects in the capillary pressure. The fluids are assumed immiscible and incompressible, and the solid matrix nondeformable. The physical laws are approximated in their original form, without using the global or complementary pressures. The linearization scheme does not require any regularization step. Furthermore, in contrast with Newton or Picard methods, there is no computation of derivatives involved. We prove rigorously that the scheme is robust and linearly convergent. We make an extensive parameter study to compare the behaviour of the L-scheme with the Newton method. | - |
dc.description.sponsorship | Stefan Karpinski wants to thank his employers, Dr Roman Rojko and Dr Stefan Zaprianov, from ESPRiT Engineering GmbH for their mentorship and support. This work was initiated during the visits of Stefan Karpinski and Florin Adrian Radu in Eindhoven, supported by ShellNWO/FOM CSER project 14CSER016, respectively, the NWO Visitors Grant 040.11.499. Iuliu Sorin Pop acknowledges the support of the Research Foundation - Flanders FWO through the project G0G1316N of the Odysseus programme, and of Statoil through the Akademia grant. | - |
dc.language.iso | en | - |
dc.rights | Copyright © 2017 John Wiley & Sons, Ltd | - |
dc.subject.other | two phase porous media flow; dynamic capillary pressure; interior penalty discontinuous Galerkin method; linearization method; convergence analysis; L-scheme | - |
dc.title | Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two phase flow in porous media with dynamic capillarity effects | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 577 | - |
dc.identifier.issue | 6 | - |
dc.identifier.spage | 553 | - |
dc.identifier.volume | 112 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Karpinski, S (reprint author), ESPRiT Engn GmbH, Munich, Germany. stefan.karpinski@esprit-engineering.de | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.class | dsPublValOverrule/author_version_not_expected | - |
dc.identifier.doi | 10.1002/nme.5526 | - |
dc.identifier.isi | 000412535300003 | - |
dc.identifier.url | http://onlinelibrary.wiley.com/doi/10.1002/nme.5526/full | - |
dc.identifier.url | http://www.uhasselt.be/Documents/CMAT/Preprints/2016/preprint1605.pdf | - |
item.fulltext | With Fulltext | - |
item.contributor | KARPINSKI, Stefan | - |
item.contributor | POP, Sorin | - |
item.contributor | Radu, Florin Adrian | - |
item.fullcitation | KARPINSKI, Stefan; POP, Sorin & Radu, Florin Adrian (2017) Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two phase flow in porous media with dynamic capillarity effects. In: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 112(6), p. 553-577. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2018 | - |
crisitem.journal.issn | 0029-5981 | - |
crisitem.journal.eissn | 1097-0207 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Karpinski_et_al-2017-International_Journal_for_Numerical_Methods_in_Engineering.pdf Restricted Access | Published version | 1.83 MB | Adobe PDF | View/Open Request a copy |
preprint1605.pdf | Non Peer-reviewed author version | 1.27 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.