Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/25461
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Melicher, Valdemar | - |
dc.contributor.author | HABER, Tom | - |
dc.contributor.author | Vanroose, Wim | - |
dc.date.accessioned | 2018-01-25T12:45:10Z | - |
dc.date.available | 2018-01-25T12:45:10Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | COMPUTATIONAL STATISTICS, 32(4), p. 1621-1643 | - |
dc.identifier.issn | 0943-4062 | - |
dc.identifier.uri | http://hdl.handle.net/1942/25461 | - |
dc.description.abstract | We consider time series data modeled by ordinary differential equations (ODEs), widespread models in physics, chemistry, biology and science in general. The sensitivity analysis of such dynamical systems usually requires calculation of various derivatives with respect to the model parameters. We employ the adjoint state method (ASM) for efficient computation of the first and the second derivatives of likelihood functionals constrained by ODEs with respect to the parameters of the underlying ODE model. Essentially, the gradient can be computed with a cost (measured by model evaluations) that is independent of the number of the ODE model parameters and the Hessian with a linear cost in the number of the parameters instead of the quadratic one. The sensitivity analysis becomes feasible even if the parametric space is high-dimensional. The main contributions are derivation and rigorous analysis of the ASM in the statistical context, when the discrete data are coupled with the continuous ODE model. Further, we present a highly optimized implementation of the results and its benchmarks on a number of problems. The results are directly applicable in (e.g.) maximum-likelihood estimation or Bayesian sampling of ODE based statistical models, allowing for faster, more stable estimation of parameters of the underlying ODE model. | - |
dc.description.sponsorship | The work of the first two authors was supported by IWT O&O Project 130406-ExaScience Life HPC. | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER HEIDELBERG | - |
dc.rights | © Springer-Verlag GmbH Germany 2017 | - |
dc.subject.other | Sensitivity analysis; Ordinary differential equations; Gradient; Hessian; Statistical computing; Mathematical statistics; Algorithm | - |
dc.subject.other | sensitivity analysis; ordinary differential equations; gradient; hessian; statistical computing; mathematical statistics; algorithm | - |
dc.title | Fast derivatives of likelihood functionals for ODE based models using adjoint-state method | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1643 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 1621 | - |
dc.identifier.volume | 32 | - |
local.format.pages | 23 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Melicher, Valdemar; Vanroose, Wim] Univ Antwerp, Dept Math & Comp Sci, Middelheimlaan 1, B-3590 Diepenbeek, Belgium. [Haber, Tom] Hasselt Univ, Expertise Ctr Digital Media, Wetenschapspk 2, B-3590 Diepenbeek, Belgium. | - |
local.publisher.place | HEIDELBERG | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1007/s00180-017-0765-8 | - |
dc.identifier.isi | 000413025300019 | - |
dc.identifier.url | https://arxiv.org/pdf/1606.04406v3.pdf | - |
item.validation | ecoom 2018 | - |
item.contributor | Melicher, Valdemar | - |
item.contributor | HABER, Tom | - |
item.contributor | Vanroose, Wim | - |
item.fullcitation | Melicher, Valdemar; HABER, Tom & Vanroose, Wim (2017) Fast derivatives of likelihood functionals for ODE based models using adjoint-state method. In: COMPUTATIONAL STATISTICS, 32(4), p. 1621-1643. | - |
item.accessRights | Open Access | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 0943-4062 | - |
crisitem.journal.eissn | 1613-9658 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fast derivatives.pdf Restricted Access | Published version | 745.79 kB | Adobe PDF | View/Open Request a copy |
dluasm.pdf | Peer-reviewed author version | 242.27 kB | Adobe PDF | View/Open |
1606.04406v3.pdf Restricted Access | Non Peer-reviewed author version | 313.56 kB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
4
checked on Sep 3, 2020
WEB OF SCIENCETM
Citations
7
checked on May 19, 2025
Page view(s)
46
checked on Sep 7, 2022
Download(s)
96
checked on Sep 7, 2022
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.