Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharawi, Lina I.-
dc.contributor.authorQABBAAH, Hamzah-
dc.contributor.authorSAMMOUR, George-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2018-02-14T12:39:00Z-
dc.date.available2018-02-14T12:39:00Z-
dc.date.issued2018-
dc.identifier.citationAwajan, Arafat; Shaout, Adnan (Ed.). Proceedings: 2017 International Conference on New Trends in Computing Sciences (ICTCS), IEEE,p. 94-97-
dc.identifier.isbn9781538605271-
dc.identifier.urihttp://hdl.handle.net/1942/25507-
dc.description.abstractAs a result of the rapid increase of online shopping, and the movement of products in and out among various countries, governments made it mandatory to pay a certain fee referred to as customs to maintain each country’s economy, based on some rules i.e. weight and price. This paper proposes a model to anticipate and inform the customer if his order is going to be subject to customs or not based on some predefined rules. The model is built using a software called SPSS and data mining techniques such as; Decision Tree (DT) and logistic regression. A comparison between the two data mining techniques is made showing that the DT results were better than the logistic regression in terms of accuracy, precision, recall and f-score.-
dc.language.isoen-
dc.publisherIEEE-
dc.rights© 2017 IEEE-
dc.subject.otherdata mining; customs; decision tree; logistic regression; classification measures-
dc.titleDevelopment of Customs Prediction Model for Online Ordering-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsAwajan, Arafat-
local.bibliographicCitation.authorsShaout, Adnan-
local.bibliographicCitation.conferencedate11-13/10/2017-
local.bibliographicCitation.conferencenameInternational Conference on New Trends in Computing Sciences (ICTCS 2017)-
local.bibliographicCitation.conferenceplaceAmman, Jordan-
dc.identifier.epage97-
dc.identifier.spage94-
local.bibliographicCitation.jcatC1-
dc.description.notesSharawi, LI (reprint author), PSUT, Software Engn Dept, Amman, Jordan. lin20148050@std.psut.edu.jo; Hamzah.qabbaah@uhasselt.be; George.sammour@psut.edu.jo; koen.vanhoof@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/ICTCS.2017.33-
dc.identifier.isi000425843800017-
local.bibliographicCitation.btitleProceedings: 2017 International Conference on New Trends in Computing Sciences (ICTCS)-
item.fulltextWith Fulltext-
item.contributorSharawi, Lina I.-
item.contributorQABBAAH, Hamzah-
item.contributorSAMMOUR, George-
item.contributorVANHOOF, Koen-
item.fullcitationSharawi, Lina I.; QABBAAH, Hamzah; SAMMOUR, George & VANHOOF, Koen (2018) Development of Customs Prediction Model for Online Ordering. In: Awajan, Arafat; Shaout, Adnan (Ed.). Proceedings: 2017 International Conference on New Trends in Computing Sciences (ICTCS), IEEE,p. 94-97.-
item.accessRightsRestricted Access-
item.validationecoom 2019-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
sharawi2017.pdf
  Restricted Access
Published version283.28 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.