Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25515
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBIJNENS, Esmee-
dc.contributor.authorZeegers, Maurice P.-
dc.contributor.authorDerom, Catherine-
dc.contributor.authorMARTENS, Dries-
dc.contributor.authorGielen, Marij-
dc.contributor.authorHAGEMAN, Geja-
dc.contributor.authorThiery, Evert-
dc.contributor.authorVlietinck, Robert-
dc.contributor.authorPLUSQUIN, Michelle-
dc.contributor.authorNAWROT, Tim-
dc.date.accessioned2018-02-19T15:05:07Z-
dc.date.available2018-02-19T15:05:07Z-
dc.date.issued2017-
dc.identifier.citationBMC medicine, 15(1), (Art N° 205)-
dc.identifier.issn1741-7015-
dc.identifier.urihttp://hdl.handle.net/1942/25515-
dc.description.abstractBackground: Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length. Methods: Among 184 twins of the East Flanders Prospective Twin Survey, telomere length in placental tissue and in buccal cells in young adulthood was measured. Residential addresses at birth and in young adulthood were geocoded and residential traffic and greenness exposure was determined. Results: We investigated individual telomere tracking from birth over a 20 year period (mean age (SD), 22.6 (3.1) years) in association with residential exposure to traffic and greenness. Telomere length in placental tissue and in buccal cells in young adulthood correlated positively (r = 0.31, P < 0.0001). Persons with higher placental telomere length at birth were more likely to have a stronger downward shift in telomere ranking over life (P < 0.0001). Maternal residential traffic exposure correlated inversely with telomere length at birth. Independent of birth placental telomere length, telomere ranking between birth and young adulthood was negatively and significantly associated with residential traffic exposure at the birth address, while traffic exposure at the residential address at adult age was not associated with telomere length. Conclusions: Longitudinal evidence of telomere length tracking from birth to adulthood shows inverse associations of residential traffic exposure in association with telomere length at birth as well as accelerated telomere shortening in the first two decades of life.-
dc.description.sponsorshipThis investigation is supported by the EU research council “project ENVIRONAGE” (ERC-2012-StG 310890), and the Flemish Scientific Fund (G073315N). Dr. Bijnens holds a fellow-ship from the Marguerite-Marie Delacroix foundation. Since its start, the East Flanders Prospective Twin Survey has been partly supported by grants from the Fund of Scientific Research Flanders and Twins, a non-profit Association for Scientific Research in Multiple Births (Belgium).-
dc.language.isoen-
dc.rights© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.-
dc.subject.othertelomere length; traffic; tracking-
dc.titleTelomere tracking from birth to adulthood and residential traffic exposure-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume15-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notes[Bijnens, Esmee M.; Martens, Dries S.; Plusquin, Michelle; Nawrot, Tim S.] Hasselt Univ, Ctr Environm Sci, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. [Bijnens, Esmee M.; Zeegers, Maurice P.; Gielen, Marij] Maastricht Univ, Med Ctr, NUTRIM Sch Nutr & Translat Res Metab, Dept Complex Genet, Maastricht, Netherlands. [Zeegers, Maurice P.] Maastricht Univ, CAPHRI Sch Publ Hlth & Primary Care, Maastricht, Netherlands. [Derom, Catherine] Ghent Univ Hosp, Dept Obstet & Gynecol, Ghent, Belgium. [Derom, Catherine; Vlietinck, Robert] Univ Hosp Leuven, Ctr Human Genet, Leuven, Belgium. [Hageman, Geja J.] Maastricht Univ, Med Ctr, NUTRIM Sch Nutr & Translat Res Metab, Dept Toxicol, Maastricht, Netherlands. [Thiery, Evert] Ghent Univ Hosp, Dept Neurol, Ghent, Belgium. [Nawrot, Tim S.] Leuven Univ KU Leuven, Dept Publ Hlth, Leuven, Belgium.-
dc.relation.referencesReferences 1. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106(6):661–73. 2. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60. 3. Collins K, Mitchell JR. Telomerase in the human organism. Oncogene. 2002;21(4):564–79. 4. Haycock PC, Heydon E, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349(g4227):g4227. 5. Zhao J, Miao K,Wang H, Ding H,Wang DW. Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS One. 2013;8(11):e79993. 6. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1238–50. 7. Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, Svenson U, Roos G, Hosgood 3rd HD, Shen M, et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011;6(6):e20466. 8. Kimura M, Hjelmborg JV, Gardner JP, Bathum L, Brimacombe M, Lu X, Christiansen L, Vaupel JW, Aviv A, Christensen K. Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008;167(7):799–806. 9. Bakaysa SL, Mucci LA, Slagboom PE, Boomsma DI, McClearn GE, Johansson B, Pedersen NL. Telomere length predicts survival independent of genetic influences. Aging Cell. 2007;6(6):769–74. 10. Chen W, Kimura M, Kim S, Cao X, Srinivasan SR, Berenson GS, Kark JD, Aviv A. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9. 11. Martens DS, Nawrot TS. Air pollution stress and the aging phenotype: the telomere connection. Curr Envrion Health Rep. 2016;3(3):258–69. 12. Aviv A, Chen W, Gardner JP, Kimura M, Brimacombe M, Cao X, Srinivasan SR, Berenson GS. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol. 2009;169(3):323–9. 13. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5(1):e8612. 14. Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M, Lu X, Berenson GS, Aviv A. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7. 15. Frenck Jr RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A. 1998;95(10):5607–10. 16. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999;190(2):157–67. 17. Benetos A, Kark JD, Susser E, Kimura M, Sinnreich R, Chen W, Steenstrup T, Christensen K, Herbig U, von Bornemann HJ, et al. Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell. 2013;12(4):615–21. 18. Factor-Litvak P, Susser E. The importance of early life studies of telomere attrition. Paediatr Perinat Epidemiol. 2015;29(2):144–5. 19. McCracken J, Baccarelli A, Hoxha M, Dioni L, Melly S, Coull B, Suh H, Vokonas P, Schwartz J. Annual ambient black carbon associated with shorter telomeres in elderly men: Veterans Affairs Normative Aging Study. Environ Health Perspect. 2010;118(11):1564–70. 20. Hoxha M, Dioni L, Bonzini M, Pesatori AC, Fustinoni S, Cavallo D, Carugno M, Albetti B, Marinelli B, Schwartz J, et al. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ Health. 2009;8:41. 21. Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, Smeets K, Vanpoucke C, Plusquin M, Nawrot TS. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a crosssectional study. Environ Health Perspect. 2015;124(7):943–50. 22. Bijnens EM, Derom C, Gielen M, Winckelmans E, Fierens F, Vlietinck R, Zeegers MP, Nawrot TS. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins. Environ Res. 2016;148:39–45. 23. Bijnens E, Zeegers MP, Gielen M, Kicinski M, Hageman GJ, Pachen D, Derom C, Vlietinck R, Nawrot TS. Lower placental telomere length may be attributed to maternal residential traffic exposure; a twin study. Environ Int. 2015;79:1–7. 24. Derom C, Thiery E, Peeters H, Vlietinck R, Defoort P, Frijns JP. The East Flanders Prospective Twin Survey (EFPTS): an actual perception. Twin Res Hum Genet. 2013;16(1):58–63. 25. Loos RJ, Beunen G, Fagard R, Derom C, Vlietinck R. The influence of zygosity and chorion type on fat distribution in young adult twins consequences for twin studies. Twin Res. 2001;4(5):356–64. 26. Gielen M, Hageman G, Pachen D, Derom C, Vlietinck R, Zeegers MP. Placental telomere length decreases with gestational age and is influenced by parity: a study of third trimester live-born twins. Placenta. 2014;35(10):791–6. 27. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21. 28. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19. 29. Vlietinck R. Determination of the Zygosity of Twins, PhD Thesis. Leuven: Catholic University of Leuven; 1986. 30. Whitfield JB. Gamma Glutamyl Transferase. Crit Rev in Clin Lab Sci. 2008; 38(4):263–355. 31. Lee DY, Kim E, Choi MH. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 2015;48(4):209–16. 32. Nawrot TS, Vos R, Jacobs L, Verleden SE, Wauters S, Mertens V, Dooms C, Hoet PH, Van Raemdonck DE, Faes C, et al. The impact of traffic air pollution on bronchiolitis obliterans syndrome and mortality after lung transplantation. Thorax. 2011;66(9):748–54. 33. Zhu Y, Hinds WC, Kim S, Sioutas C. Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc. 2002;52(9):1032–42. 34. Bijnens EM, Nawrot TS, Loos RJ, Gielen M, Vlietinck R, Derom C, Zeegers MP. Blood pressure in young adulthood and residential greenness in the earlylife environment of twins. Environ Health. 2017;16(1):53. 35. Martens DS, Plusquin M, Gyselaers W, De Vivo I, Nawrot TS. Maternal prepregnancy body mass index and newborn telomere length. BMC Med. 2016;14(1):148. 36. Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P. Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A. 2012;109(5):1743–8. 37. Iwai K, Adachi S, Takahashi M, Moller L, Udagawa T, Mizuno S, Sugawara I. Early oxidative DNA damages and late development of lung cancer in diesel exhaust-exposed rats. Environ Res. 2000;84(3):255–64. 38. Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, Yamamoto M, Kawada T, Kudoh S, Sugawara I. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. J Clin Immunol. 2008;128(3):366–73. 39. Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002;105(4):411–4. 40. Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, Diener PA, Zisch A, Krug HF, von MU. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010;118(3):432–6. 41. Saenen ND, Vrijens K, Janssen BG, Madhloum N, Peusens M, Gyselaers W, Vanpoucke C, Lefebvre W, Roels HA, Nawrot TS. Placental nitrosative stress and exposure to ambient air pollution during gestation: a population study. Am J Epidemiol. 2016;184(6):442–9. 42. von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci. 2000;908:99–110. 43. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101(49):17312–5. 44. Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH, Simhan HN, Wadhwa PD. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol. 2013; 208(2):134 e131–137. 45. Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH, Wust S, Wadhwa PD. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011; 108(33):E513–8. 46. Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014;10(3):e1004191. 47. Nordfjall K, Svenson U, Norrback KF, Adolfsson R, Lenner P, Roos G. The individual blood cell telomere attrition rate is telomere length dependent. PLoS Genet. 2009;5(2):e1000375. 48. Verhulst S, Aviv A, Benetos A, Berenson GS, Kark JD. Do leukocyte telomere length dynamics depend on baseline telomere length? An analysis that corrects for 'regression to the mean'. Eur J Epidemiol. 2013;28(11):859–66. 49. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, Desai K, Granick M, Aviv A. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597. 50. Gadalla SM, Cawthon R, Giri N, Alter BP, Savage SA. Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging. 2010;2(11):867–74. 51. Thomas P, O’Callaghan NJ, Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech Ageing Dev. 2008;129(4):183–90. 52. Youngren K, Jeanclos E, Aviv H, Kimura M, Stock J, Hanna M, Skurnick J, Bardeguez A, Aviv A. Synchrony in telomere length of the human fetus. Hum Genet. 1998;102(6):640–3. 53. Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, Skurnick J, Awad G, Aviv A. Telomere length in the newborn. Pediatr Res. 2002;52(3):377–81. 54. Shalev I. Early life stress and telomere length: investigating the connection and possible mechanisms: a critical survey of the evidence base, research methodology and basic biology. Bioessays. 2012;34(11):943–52. 55. Nawrot TS, Perez L, Kunzli N, Munters E, Nemery B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet. 2011;377(9767):732–40. 56. Dijkema MB, Mallant SF, Gehring U, van den Hurk K, Alssema M, van Strien RT, Fischer PH, Nijpels G, Stehouwer CD, Hoek G, et al. Long-term exposure to traffic-related air pollution and type 2 diabetes prevalence in a crosssectional screening-study in the Netherlands. Environ Health. 2011;10:76. 57. Baccarelli A, Martinelli I, Pegoraro V, Melly S, Grillo P, Zanobetti A, Hou L, Bertazzi PA, Mannucci PM, Schwartz J. Living near major traffic roads and risk of deep vein thrombosis. Circulation. 2009;119(24):3118–24. 58. Saenen ND, Bové H, Steuwe C, Roeffaers MBJ, Provost EB, Lefebvre W, Vanpoucke C, Ameloot M, Nawrot TS. Children's urinary environmental carbon load: a novel marker reflecting residential ambient air pollution exposure? Am J Respir Crit Care Med. 2017;196(7):873–81.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr205-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.1186/s12916-017-0964-8-
dc.identifier.isi000415874400001-
item.fulltextWith Fulltext-
item.fullcitationBIJNENS, Esmee; Zeegers, Maurice P.; Derom, Catherine; MARTENS, Dries; Gielen, Marij; HAGEMAN, Geja; Thiery, Evert; Vlietinck, Robert; PLUSQUIN, Michelle & NAWROT, Tim (2017) Telomere tracking from birth to adulthood and residential traffic exposure. In: BMC medicine, 15(1), (Art N° 205).-
item.accessRightsOpen Access-
item.validationecoom 2018-
item.contributorBIJNENS, Esmee-
item.contributorZeegers, Maurice P.-
item.contributorDerom, Catherine-
item.contributorMARTENS, Dries-
item.contributorGielen, Marij-
item.contributorHAGEMAN, Geja-
item.contributorThiery, Evert-
item.contributorVlietinck, Robert-
item.contributorPLUSQUIN, Michelle-
item.contributorNAWROT, Tim-
crisitem.journal.issn1741-7015-
crisitem.journal.eissn1741-7015-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Bijnens_et_al-2017-BMC_Medicine.pdfPublished version849.83 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

23
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

48
checked on May 8, 2024

Page view(s)

70
checked on Sep 7, 2022

Download(s)

106
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.