Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25588
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVANDERVOORT, Pieter-
dc.contributor.advisorGRIETEN, Lars-
dc.contributor.advisorVan Hoof, Chris-
dc.contributor.authorSMEETS, Christophe-
dc.date.accessioned2018-03-01T13:33:12Z-
dc.date.available2018-03-01T13:33:12Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/1942/25588-
dc.description.abstractHeart failure is a prevalent disease with high morbidity and mortality rates and a high number of (re)hospitalizations. The major reason for heart failure (re)hospitalizations is related to congestion or fluid overload. Patients with heart failure benefit from regular follow-up and monitoring of biomedical parameters for optimization of treatment strategies and early detection of disease progression. This can be done by invasive and non-invasive remote monitoring strategies. In this thesis, we added novel insight to the organization of a structured remote monitoring program for patients with cardiovascular implantable electronic devices, with a focus on the disease management strategies. First, we demonstrated a substantial amount of remote monitoring alerts with the largest amount being disease-related. Frequent phone contacts were triggered by these alerts and in most cases, general heart failure education sufficed. Next, we found that bioimpedance alerts constitute a substantial amount of incoming alerts when turned on during remote follow up. Although very promising for the early detection of impeding congestion, they did not show an influence on survival outcome. Though, a possible influence on heart failure-related hospitalizations, driven by the high number of heart failure education coupled to bioimpedance alerts, was observed. Next, we studied the use of non-invasive bioimpedance monitoring devices in congestive heart failure patients. Non-invasive bioimpedance measures correlated well with a patient's fluid balance on the individual level. On the population level, correlations are lower due to the high individual variability and different locations where the excessive fluid is coming from. Interestingly, the wearable bioimpedance device was capable of tracking peripheral edema in the case of a patient with right-sided heart failure. Furthermore, it has become clear that a lot of external factors exert an influence on bioimpedance measures, especially body posture. Most importantly, we observed that patients who do not show an improvement in thoracic impedance have a worse clinical outcome, which indicates its use as a prognostic parameter for clinical outcome. Finally, we demonstrated that the combination of remote monitoring with decision support algorithms is feasible and safe to use and leads to excellent patient satisfaction and adherence. However, due to the high quality of the usual care in our center, this tool might be more suitable in centers without intensive heart failure disease management programs.-
dc.description.sponsorshipChristophe JP Smeets was supported by imec and the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk, Hasselt University, Ziekenhuis Oost-Limburg and Jessa Hospital.-
dc.language.isoen-
dc.subject.otherheart failure; remote monitoring; bio impedance; wearable sensor-
dc.titleRemote monitoring in heart failure with a focus on thoracic bioimpedance: challenges and opportunities-
dc.typeTheses and Dissertations-
local.format.pages194-
local.bibliographicCitation.jcatT1-
dc.relation.references1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-200. 2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137-46. 3. Redfield MM, Jacobsen SJ, Burnett JC, Jr., Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194-202. 4. Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J. 2004;25(18):1614-9. 5. Ceia F, Fonseca C, Mota T, Morais H, Matias F, de Sousa A, et al. Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur J Heart Fail. 2002;4(4):531-9. 6. Komajda M, Weidinger F, Kerneis M, Cosentino F, Cremonesi A, Ferrari R, et al. EURObservational Research Programme: the Chronic Ischaemic Cardiovascular Disease Registry: Pilot phase (CICD-PILOT). Eur Heart J. 2016;37(2):152-60. 7. Gwadry-Sridhar FH, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):2315-20. 8. Aranda JM, Jr., Johnson JW, Conti JB. Current trends in heart failure readmission rates: analysis of Medicare data. Clin Cardiol. 2009;32(1):47-52. 9. Krumholz HM, Parent EM, Tu N, Vaccarino V, Wang Y, Radford MJ, et al. Readmission after hospitalization for congestive heart failure among Medicare beneficiaries. Arch Intern Med. 1997;157(1):99-104. 10. Berry C, Murdoch DR, McMurray JJ. Economics of chronic heart failure. Eur J Heart Fail. 2001;3(3):283-91. 11. Lee WC, Chavez YE, Baker T, Luce BR. Economic burden of heart failure: a summary of recent literature. Heart Lung. 2004;33(6):362-71. 12. Stewart S. Financial aspects of heart failure programs of care. Eur J Heart Fail. 2005;7(3):423-8. 13. Ambrosy AP, Pang PS, Khan S, Konstam MA, Fonarow GC, Traver B, et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J. 2013;34(11):835-43. 14. TheTask Force on cardiac p, resynchronization therapy of the European Society of Cardiology . Developed in collaboration with the European Heart Rhythm A, Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Rev Esp Cardiol (Engl Ed). 2014;67(1):58. 15. European Heart Rhythm A, European Society of C, Heart Rhythm S, Heart Failure Society of A, American Society of E, American Heart A, et al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Europace. 2012;14(9):1236-86. 16. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA, 3rd, Freedman RA, Gettes LS, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2013;61(3):e6-75. 17. Slotwiner D, Varma N, Akar JG, Annas G, Beardsall M, Fogel RI, et al. HRS Expert Consensus Statement on remote interrogation and monitoring for cardiovascular implantable electronic devices. Heart rhythm : the official journal of the Heart Rhythm Society. 2015;12(7):e69-100. 18. Mullens W, Grimm RA, Verga T, Dresing T, Starling RC, Wilkoff BL, et al. Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. J Am Coll Cardiol. 2009;53(9):765-73. 19. Linde C, Braunschweig F. Cardiac Resynchronization Therapy Follow-up: Role of Remote Monitoring. Card Electrophysiol Clin. 2015;7(4):797-807. 20. Varma N, Piccini JP, Snell J, Fischer A, Dalal N, Mittal S. The Relationship Between Level of Adherence to Automatic Wireless Remote Monitoring and Survival in Pacemaker and Defibrillator Patients. J Am Coll Cardiol. 2015;65(24):2601-10. 21. Lazarus A. Remote, wireless, ambulatory monitoring of implantable pacemakers, cardioverter defibrillators, and cardiac resynchronization therapy systems: analysis of a worldwide database. Pacing and clinical electrophysiology : PACE. 2007;30 Suppl 1:S2-S12. 22. Saxon LA, Hayes DL, Gilliam FR, Heidenreich PA, Day J, Seth M, et al. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: the ALTITUDE survival study. Circulation. 2010;122(23):2359-67. 23. Crossley GH, Boyle A, Vitense H, Chang Y, Mead RH, Investigators C. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J Am Coll Cardiol. 2011;57(10):1181-9. 24. Landolina M, Perego GB, Lunati M, Curnis A, Guenzati G, Vicentini A, et al. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation. 2012;125(24):2985-92. 25. Ladapo JA, Turakhia MP, Ryan MP, Mollenkopf SA, Reynolds MR. Health Care Utilization and Expenditures Associated With Remote Monitoring in Patients With Implantable Cardiac Devices. The American journal of cardiology. 2016;117(9):1455-62. 26. Klersy C, Boriani G, De Silvestri A, Mairesse GH, Braunschweig F, Scotti V, et al. Effect of telemonitoring of cardiac implantable electronic devices on healthcare utilization: a meta-analysis of randomized controlled trials in patients with heart failure. Eur J Heart Fail. 2016;18(2):195-204. 27. Louis AA, Turner T, Gretton M, Baksh A, Cleland JG. A systematic review of telemonitoring for the management of heart failure. Eur J Heart Fail. 2003;5(5):583-90. 28. Hindricks G, Taborsky M, Glikson M, Heinrich U, Schumacher B, Katz A, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet. 2014;384(9943):583-90. 29. Boriani G, Da Costa A, Quesada A, Ricci RP, Favale S, Boscolo G, et al. Effects of remote monitoring on clinical outcomes and use of healthcare resources in heart failure patients with biventricular defibrillators: results of the MORE-CARE multicentre randomized controlled trial. Eur J Heart Fail. 2016. 30. Cowie MR, editor REM-HF - Remote monitoring: an evaluation of implantable devices for management of heart failure patients. European Society of Cardiology 2016 Congress; 2016 August 28; Rome, Italy. 31. Tang WH, Tong W. Measuring impedance in congestive heart failure: current options and clinical applications. Am Heart J. 2009;157(3):402-11. 32. Yu CM, Wang L, Chau E, Chan RH, Kong SL, Tang MO, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112(6):841-8. 33. Wang L. Fundamentals of intrathoracic impedance monitoring in heart failure. Am J Cardiol. 2007;99(10A):3G-10G. 34. Vollmann D, Nagele H, Schauerte P, Wiegand U, Butter C, Zanotto G, et al. Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure. Eur Heart J. 2007;28(15):1835-40. 35. Ypenburg C, Bax JJ, van der Wall EE, Schalij MJ, van Erven L. Intrathoracic impedance monitoring to predict decompensated heart failure. The American journal of cardiology. 2007;99(4):554-7. 36. Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12(5):423-33. 37. Abraham WT, Compton S, Haas G, Foreman B, Canby RC, Fishel R, et al. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail. 2011;17(2):51-5. 38. van Veldhuisen DJ, Braunschweig F, Conraads V, Ford I, Cowie MR, Jondeau G, et al. Intrathoracic Impedance Monitoring, Audible Patient Alerts, and Outcome in Patients With Heart Failure. Circulation. 2011;124(16):1719-26. 39. Conraads VM, Tavazzi L, Santini M, Oliva F, Gerritse B, Yu CM, et al. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: the SENSE-HF trial. Eur Heart J. 2011;32(18):2266-73. 40. Luthje L, Vollmann D, Seegers J, Sohns C, Hasenfuss G, Zabel M. A randomized study of remote monitoring and fluid monitoring for the management of patients with implanted cardiac arrhythmia devices. Europace. 2015;17(8):1276-81. 41. Bohm M, Drexler H, Oswald H, Rybak K, Bosch R, Butter C, et al. Fluid status telemedicine alerts for heart failure: a randomized controlled trial. Eur Heart J. 2016;37(41):3154-63. 42. Domenichini G, Rahneva T, Diab IG, Dhillon OS, Campbell NG, Finlay MC, et al. The lung impedance monitoring in treatment of chronic heart failure (the LIMIT-CHF study). Europace. 2016;18(3):428-35. 43. Lee S, Polito S, Agell C, Mitra S, Yazicioglu RF, Riistama J, et al., editors. Low-power and Compact-sized Wearable Bio-impedance Monitor with Wireless Connectivity. 15th International Conference on Electrical Bio-Impedance (ICEBI) / 14th Conference on Electrical Impedance Tomography (EIT); 2013 Apr 22-25; Heilbad Heiligenstadt, GERMANY2013. 44. Lee S, Squillace G, Smeets C, Vandecasteele M, Grieten L, de Francisco R, et al. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:438-41. 45. Gastelurrutia P, Cuba-Gyllensten I, Lupon J, Zamora E, Llibre C, Caballero A, et al. Wearable vest for pulmonary congestion tracking and prognosis in heart failure: A pilot study. Int J Cardiol. 2016;215:77-9. 46. Cuba-Gyllensten I, Gastelurrutia P, Riistama J, Aarts R, Nunez J, Lupon J, et al. A novel wearable vest for tracking pulmonary congestion in acutely decompensated heart failure. Int J Cardiol. 2014;177(1):199-201. 47. Shochat M, Charach G, Meyler S, Meisel S, Weintraub M, Mengeritsky G, et al. Prediction of cardiogenic pulmonary edema onset by monitoring right lung impedance. Intensive Care Med. 2006;32(8):1214-21. 48. Shochat MK, Shotan A, Blondheim DS, Kazatsker M, Dahan I, Asif A, et al. Non-Invasive Lung IMPEDANCE-Guided Preemptive Treatment in Chronic Heart Failure Patients: A Randomized Controlled Trial (IMPEDANCE-HF Trial). J Card Fail. 2016;22(9):713-22. 49. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803-69. 50. Yancy CW, Jessup M, Bozkurt B, Masoudi FA, Butler J, McBride PE, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013. 51. Raatikainen MJ, Arnar DO, Zeppenfeld K, Merino JL, Levya F, Hindriks G, et al. Statistics on the use of cardiac electronic devices and electrophysiological procedures in the European Society of Cardiology countries: 2014 report from the European Heart Rhythm Association. Europace. 2015;17 Suppl 1:i1-75. 52. Hindricks G, Varma N. Remote monitoring and heart failure: monitoring parameters, technology, and workflow. Eur Heart J. 2016;37(41):3164-6. 53. Wilkoff BL, Auricchio A, Brugada J, Cowie M, Ellenbogen KA, Gillis AM, et al. HRS/EHRA Expert Consensus on the Monitoring of Cardiovascular Implantable Electronic Devices (CIEDs): description of techniques, indications, personnel, frequency and ethical considerations: developed in partnership with the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA); and in collaboration with the American College of Cardiology (ACC), the American Heart Association (AHA), the European Society of Cardiology (ESC), the Heart Failure Association of ESC (HFA), and the Heart Failure Society of America (HFSA). Endorsed by the Heart Rhythm Society, the European Heart Rhythm Association (a registered branch of the ESC), the American College of Cardiology, the American Heart Association. Europace. 2008;10(6):707-25. 54. Verbrugge FH, De Vusser P, Rivero-Ayerza M, Van Herendael H, Rondelez K, Dupont M, et al. Cardiac resynchronization therapy with or without defibrillator: experience from a high-volume Belgian implantation centre. Acta Cardiol. 2013;68(1):37-45. 55. Duchenne J, Verbrugge FH, Dupont M, Vercammen J, Jacobs L, Grieten L, et al. Implementation of transmural disease management in patients admitted with advanced heart failure. Acta Cardiol. 2014;69(2):145-54. 56. Smeets CJP, Verbrugge FH, Vranken J, Van der Auwera J, Mullens W, Dupont M, et al. Protocol-driven remote monitoring of cardiac resynchronization therapy as part of a heart failure disease management strategy. Acta Cardiol. 2017:1-10. 57. Clinicians Practical Guide for Using OptiVol® and Other Trends for Managing Heart Failure Patients. Available from: http://www.medtronic.com/content/dam/medtronic-com-m/mdt/crdm/documents/clinic_pract_gd_optivol.pdf. 58. Sarkar S, Hettrick DA, Koehler J, Rogers T, Grinberg Y, Yu CM, et al. Improved algorithm to detect fluid accumulation via intrathoracic impedance monitoring in heart failure patients with implantable devices. J Card Fail. 2011;17(7):569-76. 59. Mullens W, Oliveira LP, Verga T, Wilkoff BL, Tang WH. Insights from internet-based remote intrathoracic impedance monitoring as part of a heart failure disease management program. Congest Heart Fail. 2010;16(4):159-63. 60. Heist EK, Herre JM, Binkley PF, Van Bakel AB, Porterfield JG, Porterfield LM, et al. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring study). The American journal of cardiology. 2014;114(8):1249-56. 61. Evangelista LS, Dracup K, Doering LV. Treatment-seeking delays in heart failure patients. J Heart Lung Transplant. 2000;19(10):932-8. 62. Yang XW, Hua W, Ding LG, Wang J, Zheng LH, Li CQ, et al. OptiVol fluid index predicts acute decompensation of heart failure with a high rate of unexplained events. J Geriatr Cardiol. 2013;10(3):253-7. 63. Cox DA, Ginde S, Kuhlmann RS, Earing MG. Management of the pregnant woman with Marfan syndrome complicated by ascending aorta dilation. Arch Gynecol Obstet. 2014;290(4):797-802. 64. Curry RA, Gelson E, Swan L, Dob D, Babu-Narayan SV, Gatzoulis MA, et al. Marfan syndrome and pregnancy: maternal and neonatal outcomes. BJOG. 2014;121(5):610-7. 65. Gyselaers W, Tomsin K, Staelens A, Mesens T, Oben J, Molenberghs G. Maternal venous hemodynamics in gestational hypertension and preeclampsia. BMC Pregnancy Childbirth. 2014;14:212. 66. Morris R, Sunesara I, Rush L, Anderson B, Blake PG, Darby M, et al. Maternal hemodynamics by thoracic impedance cardiography for normal pregnancy and the postpartum period. Obstet Gynecol. 2014;123(2 Pt 1):318-24. 67. Tkachenko O, Shchekochikhin D, Schrier RW. Hormones and hemodynamics in pregnancy. Int J Endocrinol Metab. 2014;12(2):e14098. 68. Seth R, Moss AJ, McNitt S, Zareba W, Andrews ML, Qi M, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007;49(10):1092-8. 69. Gyselaers W, Staelens A, Mesens T, Tomsin K, Oben J, Vonck S, et al. Maternal venous Doppler characteristics are abnormal in pre-eclampsia but not in gestational hypertension. Ultrasound Obstet Gynecol. 2015;45(4):421-6. 70. Andreas M, Kuessel L, Kastl SP, Wirth S, Gruber K, Rhomberg F, et al. Bioimpedance cardiography in pregnancy: A longitudinal cohort study on hemodynamic pattern and outcome. BMC Pregnancy Childbirth. 2016;16(1):128. 71. Tan EK, Tan EL. Alterations in physiology and anatomy during pregnancy. Best Pract Res Clin Obstet Gynaecol. 2013;27(6):791-802. 72. Rosenberg MA, Samuel M, Thosani A, Zimetbaum PJ. Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing and clinical electrophysiology : PACE. 2013;36(3):328-33. 73. Coyne KS, Paramore C, Grandy S, Mercader M, Reynolds M, Zimetbaum P. Assessing the direct costs of treating nonvalvular atrial fibrillation in the United States. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research. 2006;9(5):348-56. 74. Barrett PM, Komatireddy R, Haaser S, Topol S, Sheard J, Encinas J, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. The American journal of medicine. 2014;127(1):95 e11-7. 75. Zimetbaum PJ, Josephson ME. The evolving role of ambulatory arrhythmia monitoring in general clinical practice. Annals of internal medicine. 1999;130(10):848-56. 76. Zimetbaum PJ, Kim KY, Josephson ME, Goldberger AL, Cohen DJ. Diagnostic yield and optimal duration of continuous-loop event monitoring for the diagnosis of palpitations. A cost-effectiveness analysis. Annals of internal medicine. 1998;128(11):890-5. 77. Gibson TC, Heitzman MR. Diagnostic efficacy of 24-hour electrocardiographic monitoring for syncope. Am J Cardiol. 1984;53(8):1013-7. 78. Ziegler PD, Koehler JL, Mehra R. Comparison of continuous versus intermittent monitoring of atrial arrhythmias. Heart rhythm : the official journal of the Heart Rhythm Society. 2006;3(12):1445-52. 79. Ritter MA, Kochhauser S, Duning T, Reinke F, Pott C, Dechering DG, et al. Occult atrial fibrillation in cryptogenic stroke: detection by 7-day electrocardiogram versus implantable cardiac monitors. Stroke; a journal of cerebral circulation. 2013;44(5):1449-52. 80. Rothman SA, Laughlin JC, Seltzer J, Walia JS, Baman RI, Siouffi SY, et al. The diagnosis of cardiac arrhythmias: a prospective multi-center randomized study comparing mobile cardiac outpatient telemetry versus standard loop event monitoring. J Cardiovasc Electrophysiol. 2007;18(3):241-7. 81. Bass EB, Curtiss EI, Arena VC, Hanusa BH, Cecchetti A, Karpf M, et al. The duration of Holter monitoring in patients with syncope. Is 24 hours enough? Arch Intern Med. 1990;150(5):1073-8. 82. Krahn AD, Renner SM, Klein GJ, Yee R, Skanes A, Evans EM. The Utility of Holter Monitoring Compared to Loop Recorders in the Evaluation of Syncope and Presyncope. Annals of Noninvasive Electrocardiology. 2000;5(3):284-9. 83. Olson JA, Fouts AM, Padanilam BJ, Prystowsky EN. Utility of mobile cardiac outpatient telemetry for the diagnosis of palpitations, presyncope, syncope, and the assessment of therapy efficacy. Journal of cardiovascular electrophysiology. 2007;18(5):473-7. 84. Kinlay S, Leitch JW, Neil A, Chapman BL, Hardy DB, Fletcher PJ. Cardiac event recorders yield more diagnoses and are more cost-effective than 48-hour Holter monitoring in patients with palpitations. A controlled clinical trial. Annals of internal medicine. 1996;124(1 Pt 1):16-20. 85. Sivakumaran S, Krahn AD, Klein GJ, Finan J, Yee R, Renner S, et al. A prospective randomized comparison of loop recorders versus Holter monitors in patients with syncope or presyncope. The American journal of medicine. 2003;115(1):1-5. 86. Lobodzinski SS. ECG patch monitors for assessment of cardiac rhythm abnormalities. Prog Cardiovasc Dis. 2013;56(2):224-9. 87. Lobodzinski SS, Laks MM. New devices for very long-term ECG monitoring. Cardiology journal. 2012;19(2):210-4. 88. Turakhia MP, Hoang DD, Zimetbaum P, Miller JD, Froelicher VF, Kumar UN, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device. The American journal of cardiology. 2013;112(4):520-4. 89. Buxi D, Berset T, Hijdra M, Tutelaers M, Geng D, Hulzink J, et al., editors. Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring. 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS); 2012 28-30 Nov. 2012. 90. Linker D, inventor; University of Washington, Seattle, WA (US), assignee. Long-term monitoring for detection of atrial fibrillation. United Stated2006. 91. Larburu N, Lopetegi T, Romero I, Ieee. Comparative Study of Algorithms for Atrial Fibrillation Detection. 2011 Computing in Cardiology. 2011:265-8. 92. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261(6):884-8. 93. Chakko S, Woska D, Martinez H, de Marchena E, Futterman L, Kessler KM, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90(3):353-9. 94. Stevenson LW. Are hemodynamic goals viable in tailoring heart failure therapy? Hemodynamic goals are relevant. Circulation. 2006;113(7):1020-7; discussion 33. 95. Lee S, Agell C, Polito S, Vullers R, Penders J. A low power and convenient bio-impedance monitor, and its application to respiration monitoring. Proceedings of the 4th Conference on Wireless Health; Baltimore, Maryland. 2534091: ACM; 2013. p. 1-2. 96. Staelens A, Tomsin K, Grieten L, Oben J, Mesens T, Spaanderman M, et al. Impedance cardiography for assessment of gestational hemodynamics: benefits and limitations relative to other techniques. Submitted on March 25th 2013:Expert review on medical devices. 97. Anand IS, Greenberg BH, Fogoros RN, Libbus I, Katra RP, Investigators M. Design of the Multi-Sensor Monitoring in Congestive Heart Failure (MUSIC) Study: Prospective Trial to Assess the Utility of Continuous Wireless Physiologic Monitoring in Heart Failure. Journal of Cardiac Failure. 2011;17(1):11-6. 98. Anand IS, Tang WHW, Greenberg BH, Chakravarthy N, Libbus I, Katra RP, et al. Design and Performance of a Multisensor Heart Failure Monitoring Algorithm: Results From the Multisensor Monitoring in Congestive Heart Failure (MUSIC) Study. Journal of Cardiac Failure. 2012;18(4):289-95. 99. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226-43. 100. Nijst P, Martens P, Dupont M, Tang WHW, Mullens W. Intrarenal Flow Alterations During Transition From Euvolemia to Intravascular Volume Expansion in Heart Failure Patients. JACC Heart Fail. 2017;5(9):672-81. 101. Boron WF, Boulpaep EL. In: Schmitt WR, Dudlick M, editors. Medical Physiology. Updated ed. Philadelphia: Elsevier Saunders; 2005. p. 534-57. 102. Boron WF, Boulpaep EL. In: Schmitt WR, Dudlick M, editors. Medical Physiology. Updated ed. Philadelphia: Elsevier Saunders; 2005. p. 814-27. 103. Beckmann L, van Riesen D, Leonhardt S. Optimal electrode placement and frequency range selection for the detection of lung water using bioimpedance spectroscopy. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2685-8. 104. Adams KF, Jr., Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209-16. 105. Bourge RC, Abraham WT, Adamson PB, Aaron MF, Aranda JM, Jr., Magalski A, et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol. 2008;51(11):1073-9. 106. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658-66. 107. Adamson PB, Abraham WT, Bourge RC, Costanzo MR, Hasan A, Yadav C, et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail. 2014;7(6):935-44. 108. Fonarow GC, Committee ASA. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4 Suppl 7:S21-30. 109. Whellan DJ, Droogan CJ, Fitzpatrick J, Adams S, McCarey MM, Andrel J, et al. Change in intrathoracic impedance measures during acute decompensated heart failure admission: results from the Diagnostic Data for Discharge in Heart Failure Patients (3D-HF) Pilot Study. J Card Fail. 2012;18(2):107-12. 110. Helleputte NV, Konijnenburg M, Kim H, Pettine J, Jee DW, Breeschoten A, et al., editors. A multi-parameter signal-acquisition SoC for connected personal health applications. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC); 2014 9-13 Feb. 2014. 111. Donal E, Lund LH, Oger E, Hage C, Persson H, Reynaud A, et al. New echocardiographic predictors of clinical outcome in patients presenting with heart failure and a preserved left ventricular ejection fraction: a subanalysis of the Ka (Karolinska) Ren (Rennes) Study. Eur J Heart Fail. 2015;17(7):680-8. 112. Gromadzinski L, Targonski R. Impact of clinical and echocardiographic parameters assessed during acute decompensation of chronic heart failure on 3-year survival. Kardiol Pol. 2006;64(9):951-6; discussion 7-8. 113. Cleland JGF, Teerlink JR, Davison BA, Shoaib A, Metra M, Senger S, et al. Measurement of troponin and natriuretic peptides shortly after admission in patients with heart failure-does it add useful prognostic information? An analysis of the Value of Endothelin Receptor Inhibition with Tezosentan in Acute heart failure Studies (VERITAS). Eur J Heart Fail. 2017;19(6):739-47. 114. Verbrugge FH, Nijst P, Dupont M, Penders J, Tang WH, Mullens W. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Heart Fail. 2014;7(5):766-72. 115. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658-66. 116. Amir O, Rappaport D, Zafrir B, Abraham WT. A novel approach to monitoring pulmonary congestion in heart failure: initial animal and clinical experiences using remote dielectric sensing technology. Congest Heart Fail. 2013;19(3):149-55. 117. Amir O, Azzam ZS, Gaspar T, Faranesh-Abboud S, Andria N, Burkhoff D, et al. Validation of remote dielectric sensing (ReDS) technology for quantification of lung fluid status: Comparison to high resolution chest computed tomography in patients with and without acute heart failure. Int J Cardiol. 2016;221:841-6. 118. Amir O, Ben-Gal T, Weinstein JM, Schliamser J, Burkhoff D, Abbo A, et al. Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations. Int J Cardiol. 2017;240:279-84. 119. Jodal L. Eelectrical theory behind the measurement of body fluids with bioimpedance spectroscopy (BIS). Aalborg2008. 120. Vuorela T. Technologies for wearable and portable physiological measurement devices. Tampere: Tampere university of technology; 2011. 121. Staelens A, Tomsin K, Grieten L, Oben J, Mesens T, Spaanderman M, et al. Non-invasive assessment of gestational hemodynamics: benefits and limitations of impedance cardiography versus other techniques. Expert review of medical devices. 2013;10(6):765-79. 122. Seppa VP, Viik J, Hyttinen J. Assessment of pulmonary flow using impedance pneumography. IEEE transactions on bio-medical engineering. 2010;57(9):2277-85. 123. Seppa VP, Hyttinen J, Uitto M, Chrapek W, Viik J. Novel electrode configuration for highly linear impedance pneumography. Biomedizinische Technik Biomedical engineering. 2013;58(1):35-8. 124. Wang HB, Yen CW, Liang JT, Wang Q, Liu GZ, Song R. A robust electrode configuration for bioimpedance measurement of respiration. Journal of healthcare engineering. 2014;5(3):313-27. 125. Logic JL, Maksud MG, Hamilton LH. Factors affecting transthoracic impedance signals used to measure breathing. Journal of Applied Physiology. 1967;22(2):251. 126. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2003;22(1):85-93. 127. Vuorela T, Seppä VP, Vanhala J, Hyttinen J. Design and Implementation of a Portable Long-Term Physiological Signal Recorder. IEEE Transactions on Information Technology in Biomedicine. 2010;14(3):718-25. 128. Lim WS, Carty SM, Macfarlane JT, Anthony RE, Christian J, Dakin KS, et al. Respiratory rate measurement in adults--how reliable is it? Respiratory medicine. 2002;96(1):31-3. 129. Baker LE, Geddes LA, Hoff HE, Chaput CJ. Physiological factors underlying transthoracic impedance variations in respiration. J Appl Physiol. 1966;21(5):1491-9. 130. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in medicine and biology. 1996;41(11):2251-69. 131. Luo S, Afonso VX, Webster JG, Tompkins WJ. The electrode system in impedance-based ventilation measurement. IEEE transactions on bio-medical engineering. 1992;39(11):1130-41. 132. Baker LE, Geddes LA, Hoff HE. A comparison of linear and non-linear characterizations of impedance spirometry data. Medical & biological engineering. 1966;4(4):371-9. 133. Hinz J, Moerer O, Neumann P, Dudykevych T, Hellige G, Quintel M. Effect of positive end-expiratory-pressure on regional ventilation in patients with acute lung injury evaluated by electrical impedance tomography. European Journal of Anaesthesiology. 2005;22(11):817-25. 134. Balleza M, Fornos J, Calaf N, Feixas T, Gonzalez M, Anton D, et al. [Monitoring of breathing pattern at rest by electrical impedance tomography]. Archivos de bronconeumologia. 2007;43(6):300-3. 135. Houtveen JH, Groot PF, de Geus EJ. Validation of the thoracic impedance derived respiratory signal using multilevel analysis. International journal of psychophysiology : official journal of the International Organization of Psychophysiology. 2006;59(2):97-106. 136. Kasper EK, Gerstenblith G, Hefter G, Van Anden E, Brinker JA, Thiemann DR, et al. A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission. J Am Coll Cardiol. 2002;39(3):471-80. 137. Whellan DJ, Gaulden L, Gattis WA, Granger B, Russell SD, Blazing MA, et al. The benefit of implementing a heart failure disease management program. Arch Intern Med. 2001;161(18):2223-8. 138. Albert NM, Fonarow GC, Yancy CW, Curtis AB, Stough WG, Gheorghiade M, et al. Influence of dedicated heart failure clinics on delivery of recommended therapies in outpatient cardiology practices: findings from the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Am Heart J. 2010;159(2):238-44. 139. Jaarsma T, Stromberg A. Heart failure clinics in Europe. Prog Cardiovasc Nurs. 2000;15(2):67-8. 140. Maggioni AP, Anker SD, Dahlstrom U, Filippatos G, Ponikowski P, Zannad F, et al. Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12,440 patients of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2013;15(10):1173-84. 141. Heywood JT, Fonarow GC, Yancy CW, Albert NM, Curtis AB, Gheorghiade M, et al. Comparison of medical therapy dosing in outpatients cared for in cardiology practices with heart failure and reduced ejection fraction with and without device therapy: report from IMPROVE HF. Circ Heart Fail. 2010;3(5):596-605. 142. Komajda M, Follath F, Swedberg K, Cleland J, Aguilar JC, Cohen-Solal A, et al. The EuroHeart Failure Survey programme--a survey on the quality of care among patients with heart failure in Europe. Part 2: treatment. Eur Heart J. 2003;24(5):464-74. 143. Antonicelli R, Mazzanti I, Abbatecola AM, Parati G. Impact of home patient telemonitoring on use of beta-blockers in congestive heart failure. Drugs Aging. 2010;27(10):801-5. 144. Moyer-Knox D, Mueller TM, Vuckovic K, Mischke L, Williams RE. Remote titration of carvedilol for heart failure patients by advanced practice nurses. J Card Fail. 2004;10(3):219-24. 145. Spaeder J, Najjar SS, Gerstenblith G, Hefter G, Kern L, Palmer JG, et al. Rapid titration of carvedilol in patients with congestive heart failure: a randomized trial of automated telemedicine versus frequent outpatient clinic visits. Am Heart J. 2006;151(4):844 e1-10. 146. de Vries AE, de Jong RM, van der Wal MH, Jaarsma T, van Dijk RB, Hillege HL. The value of INnovative ICT guided disease management combined with Telemonitoring in OUtpatient clinics for Chronic Heart failure patients. Design and methodology of the IN TOUCH study: a multicenter randomised trial. BMC health services research. 2011;11:167. 147. Kraai I, de Vries A, Vermeulen K, van Deursen V, van der Wal M, de Jong R, et al. The value of telemonitoring and ICT-guided disease management in heart failure: Results from the IN TOUCH study. Int J Med Inform. 2016;85(1):53-60. 148. Kropf M, Modre-Osprian R, Hayn D, Fruhwald F, Schreier G. Telemonitoring in heart failure patients with clinical decision support to optimize medication doses based on guidelines. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3168-71. 149. The treatment of heart failure. Task Force of the Working Group on Heart Failure of the European Society of Cardiology. Eur Heart J. 1997;18(5):736-53. 150. Lewin J, Ledwidge M, O'Loughlin C, McNally C, McDonald K. Clinical deterioration in established heart failure: what is the value of BNP and weight gain in aiding diagnosis? Eur J Heart Fail. 2005;7(6):953-7. 151. Adamson PB. Pathophysiology of the transition from chronic compensated and acute decompensated heart failure: new insights from continuous monitoring devices. Curr Heart Fail Rep. 2009;6(4):287-92. 152. Zhang J, Goode KM, Cuddihy PE, Cleland JG, Investigators T-H. Predicting hospitalization due to worsening heart failure using daily weight measurement: analysis of the Trans-European Network-Home-Care Management System (TEN-HMS) study. Eur J Heart Fail. 2009;11(4):420-7. 153. Chaudhry SI, Wang Y, Concato J, Gill TM, Krumholz HM. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116(14):1549-54. 154. Dendale P, De Keulenaer G, Troisfontaines P, Weytjens C, Mullens W, Elegeert I, et al. Effect of a telemonitoring-facilitated collaboration between general practitioner and heart failure clinic on mortality and rehospitalization rates in severe heart failure: the TEMA-HF 1 (TElemonitoring in the MAnagement of Heart Failure) study. Eur J Heart Fail. 2012;14(3):333-40. 155. Chaudhry SI, Mattera JA, Curtis JP, Spertus JA, Herrin J, Lin Z, et al. Telemonitoring in Patients with Heart Failure. New England Journal of Medicine. 2010;363(24):2301-9. 156. Koehler F, Winkler S, Schieber M, Sechtem U, Stangl K, Bohm M, et al. Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in heart failure study. Circulation. 2011;123(17):1873-80.-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
item.contributorSMEETS, Christophe-
item.fullcitationSMEETS, Christophe (2018) Remote monitoring in heart failure with a focus on thoracic bioimpedance: challenges and opportunities.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Doctoraatsproefschrift Christophe Smeets.pdf4.6 MBAdobe PDFView/Open
Show simple item record

Page view(s)

78
checked on Sep 6, 2022

Download(s)

64
checked on Sep 6, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.