Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/255
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | DECLERCK, Lieven | - |
dc.contributor.author | AERTS, Marc | - |
dc.date.accessioned | 2004-08-31T08:21:14Z | - |
dc.date.available | 2004-08-31T08:21:14Z | - |
dc.date.issued | 1998 | - |
dc.identifier.citation | Computational Statistics and Data Analysis, 26(3). p. 327-350 | - |
dc.identifier.issn | 0167-9473 | - |
dc.identifier.uri | http://hdl.handle.net/1942/255 | - |
dc.description.abstract | The effect of misspecifying the parametric response model for a clustered binary outcome from a toxicological study on the assessment of dose effect is investigated. A marginal, random effects, and conditional model are contrasted, with the emphasis on likelihood based estimation. The methods are compared through asymptotic calculations, by means of small sample simulations, and on real developmental toxicity data. It is found that the beta-binomial and conditional models exhibit satisfactory behavior in terms of testing the null hypothesis of no dose effect. Whereas the conditional model has clear computational advantages, parameters in the beta-binomial model have a straightforward marginal interpretation | - |
dc.language.iso | en | - |
dc.rights | (C) 1998 Elsevier Science B.V. All fights reserved | - |
dc.subject | Clustered data | - |
dc.subject | Categorical data | - |
dc.subject.other | clustered data; dose-response models; likelihood estimation; litter effect; reproductive toxicology | - |
dc.title | Misspecifying the likelihood for clustered binary data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 350 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 327 | - |
dc.identifier.volume | 26 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1016/S0167-9473(97)00037-6 | - |
dc.identifier.isi | 000071646900005 | - |
item.validation | ecoom 1999 | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | DECLERCK, Lieven | - |
item.contributor | AERTS, Marc | - |
item.fullcitation | MOLENBERGHS, Geert; DECLERCK, Lieven & AERTS, Marc (1998) Misspecifying the likelihood for clustered binary data. In: Computational Statistics and Data Analysis, 26(3). p. 327-350. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
crisitem.journal.issn | 0167-9473 | - |
crisitem.journal.eissn | 1872-7352 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
a.pdf Restricted Access | Published version | 1.38 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.