Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorDECLERCK, Lieven-
dc.contributor.authorAERTS, Marc-
dc.date.accessioned2004-08-31T08:21:14Z-
dc.date.available2004-08-31T08:21:14Z-
dc.date.issued1998-
dc.identifier.citationComputational Statistics and Data Analysis, 26(3). p. 327-350-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/255-
dc.description.abstractThe effect of misspecifying the parametric response model for a clustered binary outcome from a toxicological study on the assessment of dose effect is investigated. A marginal, random effects, and conditional model are contrasted, with the emphasis on likelihood based estimation. The methods are compared through asymptotic calculations, by means of small sample simulations, and on real developmental toxicity data. It is found that the beta-binomial and conditional models exhibit satisfactory behavior in terms of testing the null hypothesis of no dose effect. Whereas the conditional model has clear computational advantages, parameters in the beta-binomial model have a straightforward marginal interpretation-
dc.language.isoen-
dc.rights(C) 1998 Elsevier Science B.V. All fights reserved-
dc.subjectClustered data-
dc.subjectCategorical data-
dc.subject.otherclustered data; dose-response models; likelihood estimation; litter effect; reproductive toxicology-
dc.titleMisspecifying the likelihood for clustered binary data-
dc.typeJournal Contribution-
dc.identifier.epage350-
dc.identifier.issue3-
dc.identifier.spage327-
dc.identifier.volume26-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/S0167-9473(97)00037-6-
dc.identifier.isi000071646900005-
item.validationecoom 1999-
item.contributorMOLENBERGHS, Geert-
item.contributorDECLERCK, Lieven-
item.contributorAERTS, Marc-
item.fullcitationMOLENBERGHS, Geert; DECLERCK, Lieven & AERTS, Marc (1998) Misspecifying the likelihood for clustered binary data. In: Computational Statistics and Data Analysis, 26(3). p. 327-350.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version1.38 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.