Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25619
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeus, David-
dc.contributor.authorMITRA, Koondanibha-
dc.contributor.authorPOP, Sorin-
dc.contributor.authorRadu, Florin Adrian-
dc.contributor.authorRohde, Christian-
dc.date.accessioned2018-03-02T09:23:39Z-
dc.date.available2018-03-02T09:23:39Z-
dc.date.issued2018-
dc.identifier.citationCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 333, p. 331-355-
dc.identifier.issn0045-7825-
dc.identifier.urihttp://hdl.handle.net/1942/25619-
dc.description.abstractThe Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface . This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at . After an Euler implicit discretisation of the resulting nonlinear subproblems, a linear iterative (-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the convergence of the scheme under mild restrictions on the time step size. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. After presenting a parametric study that can be used to optimise the proposed scheme, we briefly discuss the effect of parallelisation and give an example of a four-domain implementation.-
dc.description.sponsorshipThe Netherlands Organisation for Scientific Research NWO Visitors Grant 040.11.499, the Odysseus programme of the Research Foundation - Flanders FWO (G0G1316N), UHasselt Special Research Fund project BOF17BL04, the Norwegian Research Council projects NRC 255510 (CHI) and NRC255426 (IMMENS), Shell-NWO/FOM CSER programme (project 14CSER016), the German Research Foundation through IRTG 1398 NUPUS (project B17).-
dc.language.isoen-
dc.rights(C) 2018 Elsevier B.V. All rights reserved-
dc.subject.otherdomain decomposition; L-scheme linearisation; Richards equation; unsaturated porous media flow-
dc.titleA linear domain decomposition method for partially saturated flow in porous media-
dc.typeJournal Contribution-
dc.identifier.epage355-
dc.identifier.spage331-
dc.identifier.volume333-
local.bibliographicCitation.jcatA1-
dc.description.notesSeus, D (reprint author), Inst Appl Anal & Numer Simulat, Chair Appl Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany, david.seus@ians.uni-stuttgart.de-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.cma.2018.01.029-
dc.identifier.isi000427785000015-
dc.identifier.urlhttp://www.uhasselt.be/Documents/CMAT/Preprints/2017/UP1708.pdf-
dc.identifier.urlhttps://arxiv.org/abs/1708.03224-
item.fullcitationSeus, David; MITRA, Koondanibha; POP, Sorin; Radu, Florin Adrian & Rohde, Christian (2018) A linear domain decomposition method for partially saturated flow in porous media. In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 333, p. 331-355.-
item.validationecoom 2019-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorSeus, David-
item.contributorMITRA, Koondanibha-
item.contributorPOP, Sorin-
item.contributorRadu, Florin Adrian-
item.contributorRohde, Christian-
crisitem.journal.issn0045-7825-
crisitem.journal.eissn1879-2138-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0045782518300318-main.pdf
  Restricted Access
Published version1.55 MBAdobe PDFView/Open    Request a copy
1708.03224.pdfPeer-reviewed author version1.59 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

13
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

36
checked on May 16, 2024

Page view(s)

54
checked on Sep 7, 2022

Download(s)

84
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.