Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTODI, Kashyap-
dc.contributor.authorJokinen, Jussi-
dc.contributor.authorLUYTEN, Kris-
dc.contributor.authorOulasvirta, Antti-
dc.date.accessioned2018-03-05T15:15:21Z-
dc.date.available2018-03-05T15:15:21Z-
dc.date.issued2018-
dc.identifier.citationIUI 2018 Proceedings of the 23rd International Conference on Intelligent User Interfaces, ,p. 547-558-
dc.identifier.isbn9781450349451-
dc.identifier.urihttp://hdl.handle.net/1942/25640-
dc.description.abstractIn domains where users are exposed to large variations in visuo-spatial features among designs, they often spend excess time searching for common elements (features) in familiar locations. This paper contributes computational approaches to restructuring layouts such that features on a new, unvisited interface can be found quicker. We explore four concepts of familiarisation, inspired by the human visual system (HVS), to automatically generate a familiar design for each user. Given a history of previously visited interfaces, we restructure the spatial layout of the new (unseen) interface with the goal of making its elements more easily found. Familiariser is a browser-based implementation that automatically restructures webpage layouts based on the visual history of the user. Our evaluation with users provides first evidence favouring familiarisation.-
dc.description.sponsorshipThe project has partially received funding from the Academy of Finland project COMPUTED and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 637991).-
dc.language.isoen-
dc.publisherACM-
dc.rights© 2018 ACM. ISBN 978-1-4503-4945-1/18/03-
dc.subject.othervisual search; graphical layouts; computational design; adaptive user interfaces-
dc.titleFamiliarisation: Restructuring Layouts with Visual Learning Models-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate07–11/03/2018-
local.bibliographicCitation.conferencename2018 ACM Conference on Intelligent User Interfaces (IUI '18)-
local.bibliographicCitation.conferenceplaceTokyo, Japan-
dc.identifier.epage558-
dc.identifier.spage547-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.type.programmeH2020-
local.relation.h2020637991-
dc.identifier.doi10.1145/3172944.3172949-
dc.identifier.isi000458192600059-
local.bibliographicCitation.btitleIUI 2018 Proceedings of the 23rd International Conference on Intelligent User Interfaces-
item.contributorTODI, Kashyap-
item.contributorJokinen, Jussi-
item.contributorLUYTEN, Kris-
item.contributorOulasvirta, Antti-
item.fullcitationTODI, Kashyap; Jokinen, Jussi; LUYTEN, Kris & Oulasvirta, Antti (2018) Familiarisation: Restructuring Layouts with Visual Learning Models. In: IUI 2018 Proceedings of the 23rd International Conference on Intelligent User Interfaces, ,p. 547-558.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2020-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
p547-todi.pdf
  Restricted Access
Published version19.42 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.