Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorULU, Fulya-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorVRANKEN, Thomas-
dc.contributor.authorDE SLOOVERE, Dries-
dc.contributor.authorVERHEIJEN, Maarten-
dc.contributor.authorKarakulina, M. Olesia-
dc.contributor.authorAbakumov, M. Artem-
dc.contributor.authorHadermann, Joke-
dc.contributor.authorVAN BAEL, Marlies-
dc.contributor.authorHARDY, An-
dc.date.accessioned2018-03-16T07:43:31Z-
dc.date.available2018-03-16T07:43:31Z-
dc.date.issued2018-
dc.identifier.citationRSC Advances, 8(13), p. 7287-7300-
dc.identifier.issn2046-2069-
dc.identifier.urihttp://hdl.handle.net/1942/25786-
dc.description.abstractThe particle surface of LiNi0.5Mn1.5O4-δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis-condensation reaction followed by an anneal in oxygen. The effect of different annealing temperatures (500-850oC) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500oC. This results in a 2-4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of Ti bulk doped LiNi(0.5-w)Mn(1.5+w)-tTitO4 phase and Ti-rich LiNi0.5Mn1.5-yTiyO4 segregates above 750°C. Fourier-transform infrared spectrometry indicates an increasing Ni-Mn ordering withannealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500oC shows a superior cyclic stability, Coulombic efficiency and rate performance compared to bare LNMO annealed at 500oC when cycled at 3.4-4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.-
dc.description.sponsorshipThis research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements.-
dc.language.isoen-
dc.rightsOpen Access Article. Published on 13 February 2018. Downloaded on 15/02/2018 11:44:59. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.-
dc.titleTi surface doping of LiNi0.5Mn1.5O4-δ positive electrodes for lithium ion batteries-
dc.typeJournal Contribution-
dc.identifier.epage7300-
dc.identifier.issue13-
dc.identifier.spage7287-
dc.identifier.volume8-
local.bibliographicCitation.jcatA1-
dc.relation.references1. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264. 2. Christian M. Julien, A.M., Karim Zaghib and Henri Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2014. 2: p. 132-154. 3. Myung, S.T., et al., Progress in High-Capacity Core-Shell Cathode Materials for Rechargeable Lithium Batteries. J Phys Chem Lett, 2014. 5(4): p. 671-9. 4. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430. 5. Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013. 135(4): p. 1167-76. 6. Su, L., Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures. Nanoscale, 2011. 3(10): p. 3967-83. 7. Ouyang, C.Y., S.Q. Shi, and M.S. Lei, Jahn–Teller distortion and electronic structure of LiMn2O4. Journal of Alloys and Compounds, 2009. 474(1-2): p. 370-374. 8. Liu, D.-Q., X.-Q. Liu, and Z.-Z. He, The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery. Materials Chemistry and Physics, 2007. 105(2-3): p. 362-366. 9. Zhong, Q., Bonakdarpour, A., Zhang, M., Gao, Y., Dahn, J.R., Synthesis and electrochemistry of LiNixMn2-xO4. J. Electrochem. Soc., 1997. 144(1): p. 205. 10. Santhanam, R. and B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. Journal of Power Sources, 2010. 195(17): p. 5442-5451. 11. Julien, C.M. and A. Mauger, Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics, 2013. 19(7): p. 951-988. 12. Kunduraci, M. and G.G. Amatucci, Synthesis and Characterization of Nanostructured 4.7 V Li[sub x]Mn[sub 1.5]Ni[sub 0.5]O[sub 4] Spinels for High-Power Lithium-Ion Batteries. Journal of The Electrochemical Society, 2006. 153(7): p. A1345. 13. Duncan, H., et al., Relationships between Mn3+Content, Structural Ordering, Phase Transformation, and Kinetic Properties in LiNixMn2–xO4Cathode Materials. Chemistry of Materials, 2014. 26(18): p. 5374-5382. 14. Kunduraci, M. and G.G. Amatucci, Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥x≥0.36) spinels. Journal of Power Sources, 2007. 165(1): p. 359-367. 15. Guoqiang, L., LiNi0.5Mn1.5O4 Spinel and Its Derivatives as Cathodes for LIBs, in www.intechopen.com. 16. Liu, G., et al., Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4. Journal of Power Sources, 2013. 243: p. 260-266. 17. Kosova, N.V., et al., Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5-x Mn1.5-y M x+y O4 (M = Co, Cr, Ti; x+y = 0.05) prepared by mechanochemical way. Journal of Solid State Electrochemistry, 2015. 20(1): p. 235-246. 18. Vetter, J., et al., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005. 147(1-2): p. 269-281. 19. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. 2012. 20. Pieczonka, N.P.W., et al., Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4High-Voltage Spinel for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(31): p. 15947-15957. 21. Ma, J., et al., Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chemistry of Materials, 2016. 28(11): p. 3578-3606. 22. Hao, X. and B.M. Bartlett, Improving the Electrochemical Stability of the High-Voltage Li-Ion Battery Cathode LiNi0.5Mn1.5O4 by Titanate-Based Surface Modification. Journal of the Electrochemical Society, 2013. 160(5): p. A3162-A3170. 23. Wang, H., et al., Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J. Mater. Chem. A, 2017. 5(2): p. 822-834. 24. Yang, L., B. Ravdel, and B.L. Lucht, Electrolyte Reactions with the Surface of High Voltage LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2010. 13(8): p. A95. 25. Zhu, Y., Yi, T., Zhu, R., and Zhou, An, Increased cycling stability of Li4Ti5O12-coated LiMn1.5Ni0.5O as cathode material for lithium-ion batteries. Ceramics International, 2013. 39: p. 3087-3094. 26. Deng, H., Nie, P., Luo, H., Zhang, Y., Wang, J., Zhang, X., Highly enhanced lithium storage capability of LiNi0.5Mn1.5O4 by coating with Li2TiO3 for Li-ion batteries. J. Mater. Chem. A, 2014. 2(43): p. 18256-18262. 27. Li, J., Zhu, Y., Wang, L., Cao, C., Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability. ACS Appl Mater Interfaces, 2014. 6(21): p. 18742-50. 28. Lu, J., et al., Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nat Commun, 2014. 5: p. 5693. 29. Kim, J.H., et al., Effect of Ti Substitution for Mn on the Structure of LiNi[sub 0.5]Mn[sub 1.5−x]Ti[sub x]O[sub 4] and Their Electrochemical Properties as Lithium Insertion Material. Journal of The Electrochemical Society, 2004. 151(11): p. A1911. 30. Liu, D.a.Y., Z. M., Fabrication of size-tunable TiO2 tubes using rod-shaped calcite templates Langmuir 2007. 23: p. 10333-10341. 31. Li, W., et al., A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. J Am Chem Soc, 2012. 134(29): p. 11864-7. 32. Malvern Instruments: Zetasizer nano series user manual. Chapter 16: Zeta potential theory. 2004. 33. ASTM, Standard Test Method for Determination of pHe of Ethanol, Denatured Fuel Ethanol,and Fuel Ethanol in D 6423 – 99. 1999. 34. Schneider, C.A.R., W. S. & Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nature methods 9(7), 2012: p. 671-675. 35. A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000). 36. B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. 34, 210-213 (2001). 37. Livage, J., Henry, M., Sanchez, C., Sol-gel chemistry of transition metal oxides. Prog. Solid St. Chem, 1988. 18: p. 259. 38. The effect of acids and bases on the dispersion and stabilization of ceramic particles in ethanol. Journal of European Ceramic Society. 20: p. 659-665. 39. Wang, P., Chen, D.,Tang, F.Q., Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir 2006. 22: p. 4832. 40. Chemelewski, K.R., et al., Factors Influencing the Electrochemical Properties of High-Voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering. Chemistry of Materials, 2013. 25(14): p. 2890-2897. 41. Ying, L.H., L.S.; White, T.;, Withers,R; Hai, L.B., Controlled Nanophase Development in Photocatalytic Titania. Materials Transactions, 2003. 44(7): p. 1328. 42. Xiao, J., et al., High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater, 2012. 24(16): p. 2109-16. 43. Le, M.-L.-P., et al., Spinel-type solid solutions involving Mn4+ and Ti4+:Crystal chemistry, magnetic and electrochemical properties. Journal of Physics and Chemistry of Solids, 2011. 72(2): p. 124-135. 44. Alcantara, R., Jaraba, M., Lavela, P., Tirado, J.L., Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials. Chem. Mater. , 2003. 15: p. 2376-2382. 45. Lin, M., et al., A Strategy to Improve Cyclic Performance of LiNi0.5Mn1.5O4 in a Wide Voltage Region by Ti-Doping. Journal of the Electrochemical Society, 2013. 160(5): p. A3036-A3040. 46. Kim, J.-H., et al., Improved lithium-ion battery performance of LiNi0.5Mn1.5−xTixO4 high voltage spinel in full-cells paired with graphite and Li4Ti5O12 negative electrodes. Journal of Power Sources, 2014. 262: p. 62-71. 47. Branford, W., Green, M.A., Neumann, D.A., Structure and ferromagnetism in Mn(4+) spinels: A M0.5 Mn1.5 O4 (A = Li, Cu; M = Ni, Mg). Chem. Mater., 2002. 14: p. 1649-1656. 48. Ariyoshi, K., et al., Topotactic Two-Phase Reactions of Li[Ni[sub 1/2]Mn[sub 3/2]]O[sub 4] (P4[sub 3]32) in Nonaqueous Lithium Cells. Journal of The Electrochemical Society, 2004. 151(2): p. A296. 49. Deng, J., et al., Improving the fast discharge performance of high-voltage LiNi0.5Mn1.5O4 spinel by Cu2+, Al3+, Ti4+ tri-doping. Journal of Alloys and Compounds, 2016. 677: p. 18-26. 50. Kim, J.-H., et al., Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochimica Acta, 2013. 90: p. 556-562. 51. Strobel, P., et al., Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sciences, 2003. 5(7): p. 1009-1018. 52. Wang, L., et al., Improved structural and electrochemical performances of LiNi0.5Mn1.5O4cathode materials by Cr3+and/or Ti4+doping. RSC Adv., 2015. 5(121): p. 99856-99865. 53. Gryffroy, D., Vandenberghe, R. E., Cation distribution, cluster structure and ionic orderinf of the spinel series LiNi0.5Mn1.5-xTixO4 and LiNi0.5-yMgyMn1.5O4. J. Phys. Chem. Solids, 1992. 53(6): p. 777-784. 54. Mikihiro Takagi, Y.M., Makoto Tajima, Takayuki Asao, Morihiro Saito, Akimasa Tasaka, and Minoru Inaba, Improvement of electrochemical properties of a high potential negative electrode TiO2(B). ECS Transactions, 2011. 33 (29): p. 57-66. 55. Cabana, J., et al., Comparison of the Performance of LiNi1/2Mn3/2O4 with Different Microstructures. Journal of The Electrochemical Society, 2011. 158(9): p. A997. 56. Mao, J., K. Dai, and Y. Zhai, Electrochemical studies of spinel LiNi0.5Mn1.5O4 cathodes with different particle morphologies. Electrochimica Acta, 2012. 63: p. 381-390. 57. Yang, J., et al., Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd $\bar 3$ m). Nano Research, 2013. 6(9): p. 679-687. 58. Arrebola, J.C., et al., Expanding the Rate Capabilities of the LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel by Exploiting the Synergistic Effect Between Nano and Microparticles. Electrochemical and Solid-State Letters, 2005. 8(12): p. A641. 59. Cho, H.M., et al., Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials. ACS Appl Mater Interfaces, 2015. 7(30): p. 16231-9. 60. Terada, Y., et al., In Situ XAFS Analysis of Li(Mn, M)2O4 (M=Cr, Co, Ni) 5V Cathode Materials for Lithium-Ion Secondary Batteries. Journal of Solid State Chemistry, 2001. 156(2): p. 286-291. 61. J.-H. Kim, S.-T.M., C. S. Yoon, S. G. Kang and Y.-K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3m and P4332. Chem. Mater., 2004. 16: p. 906-914. 62. Lim, J.M., et al., Design of Surface Doping for Mitigating Transition Metal Dissolution in LiNi0.5 Mn1.5 O4 Nanoparticles. ChemSusChem, 2016. 9(20): p. 2967-2973.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1039/c7ra12932g-
dc.identifier.isi000425508900064-
item.fullcitationULU, Fulya; D'HAEN, Jan; VRANKEN, Thomas; DE SLOOVERE, Dries; VERHEIJEN, Maarten; Karakulina, M. Olesia; Abakumov, M. Artem; Hadermann, Joke; VAN BAEL, Marlies & HARDY, An (2018) Ti surface doping of LiNi0.5Mn1.5O4-δ positive electrodes for lithium ion batteries. In: RSC Advances, 8(13), p. 7287-7300.-
item.fulltextWith Fulltext-
item.validationecoom 2019-
item.contributorULU, Fulya-
item.contributorD'HAEN, Jan-
item.contributorVRANKEN, Thomas-
item.contributorDE SLOOVERE, Dries-
item.contributorVERHEIJEN, Maarten-
item.contributorKarakulina, M. Olesia-
item.contributorAbakumov, M. Artem-
item.contributorHadermann, Joke-
item.contributorVAN BAEL, Marlies-
item.contributorHARDY, An-
item.accessRightsOpen Access-
crisitem.journal.eissn2046-2069-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
10.1039@c7ra12932g.pdfPublished version1.93 MBAdobe PDFView/Open
F. Ulu Okudur et al..pdfPeer-reviewed author version2.37 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.