Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/257
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | AERTS, Marc | - |
dc.contributor.author | CLAESKENS, Gerda | - |
dc.date.accessioned | 2004-08-31T08:28:55Z | - |
dc.date.available | 2004-08-31T08:28:55Z | - |
dc.date.issued | 1999 | - |
dc.identifier.citation | Annals of the Institute of Statistical Mathematics, 51(3). p. 515-530 | - |
dc.identifier.issn | 0020-3157 | - |
dc.identifier.uri | http://hdl.handle.net/1942/257 | - |
dc.description.abstract | Asymptotic properties of the parametric bootstrap procedure for maximum pseudolikelihood estimators and hypothesis tests are studied in the general framework of associated populations. The technique is applied to the analysis of toxicological experiments which, based on pseudolikelihood inference for clustered binary data, fits into this framework. It is shown that the bootstrap approximation can be used as an interesting alternative to the classical asymptotic distribution of estimators and test statistics. Finite sample simulations for clustered binary data models confirm the asymptotic theory and indicate some substantial improvements. | - |
dc.language.iso | en | - |
dc.publisher | KLUWER | - |
dc.subject | Clustered data | - |
dc.subject | Computer intensive | - |
dc.title | Bootstrapping pseudolikelihood models for clustered binary data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 530 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 515 | - |
dc.identifier.volume | 51 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1023/A:1003902206203 | - |
dc.identifier.isi | 000083438400007 | - |
item.fulltext | No Fulltext | - |
item.contributor | AERTS, Marc | - |
item.contributor | CLAESKENS, Gerda | - |
item.fullcitation | AERTS, Marc & CLAESKENS, Gerda (1999) Bootstrapping pseudolikelihood models for clustered binary data. In: Annals of the Institute of Statistical Mathematics, 51(3). p. 515-530. | - |
item.accessRights | Closed Access | - |
item.validation | ecoom 2000 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.