Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRadu, Florin Adrian-
dc.contributor.authorKumar, Kundan-
dc.contributor.authorNordbotten, Jan Martin-
dc.contributor.authorPOP, Sorin-
dc.date.accessioned2018-04-12T08:13:27Z-
dc.date.available2018-04-12T08:13:27Z-
dc.date.issued2018-
dc.identifier.citationIMA JOURNAL OF NUMERICAL ANALYSIS, 38 (2),p. 884-920-
dc.identifier.issn0272-4979-
dc.identifier.urihttp://hdl.handle.net/1942/25850-
dc.description.abstractIn this work, we present a mass conservative numerical scheme for two-phase flow in porous media. The model for flow consists of two fully coupled, nonlinear equations: a degenerate parabolic equation and an elliptic one. The proposed numerical scheme is based on backward Euler for the temporal discretization and mixed finite element method for the spatial one. A priori stability and error estimates are presented to prove the convergence of the scheme. A monotone increasing, Holder continuous saturation is considered. The convergence of the scheme is naturally dependant on the Holder exponent. The nonlinear systems ¨ within each time step are solved by a robust linearization method, called the L-scheme. This iterative method does not involve any regularization step. The convergence of the L-scheme is rigorously proved under the assumption of a Lipschitz continuous saturation. For the Holder continuous case, a numerical convergence is established. Numerical results (two-dimensional and three-dimensional) are presented to sustain the theoretical findings.-
dc.description.sponsorshipNWO support through the Visitors Grant (040.11.351 to J.M.N.); Meltzer foundation, University of Bergen and the NWO Visitors Grant (040.11.499 to F.A.R.); Research Foundation-Flanders FWO through the Odysseus programme (G0G1316N to I.S.P.).-
dc.language.isoen-
dc.rights© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved-
dc.subject.otherlinearization; two-phase flow; mixed finite element method; convergence analysis; a priori error estimates; porous media; Richards’ equation; degenerate parabolic problems; coupled problems; holder continuity-
dc.titleA robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities-
dc.typeJournal Contribution-
dc.identifier.epage920-
dc.identifier.issue2-
dc.identifier.spage884-
dc.identifier.volume38-
local.format.pages37-
local.bibliographicCitation.jcatA1-
dc.description.notesRadu, FA (reprint author), Univ Bergen, Dept Math, POB 7800, N-5020 Bergen, Norway. florin.radu@math.uib.no; kundan.kumar@math.uib.no; jan.nordbotten@math.uib.no; sorin.pop@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1093/imanum/drx032-
dc.identifier.isi000453910300001-
item.fulltextWith Fulltext-
item.contributorRadu, Florin Adrian-
item.contributorKumar, Kundan-
item.contributorNordbotten, Jan Martin-
item.contributorPOP, Sorin-
item.fullcitationRadu, Florin Adrian; Kumar, Kundan; Nordbotten, Jan Martin & POP, Sorin (2018) A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities. In: IMA JOURNAL OF NUMERICAL ANALYSIS, 38 (2),p. 884-920.-
item.accessRightsRestricted Access-
crisitem.journal.issn0272-4979-
crisitem.journal.eissn1464-3642-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
preprint1604.pdfNon Peer-reviewed author version493.3 kBAdobe PDFView/Open
10.1093@imanum@drx032.pdf
  Restricted Access
Published version1.2 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.