Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/25851
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cao, Xiulei | - |
dc.contributor.author | Nemadjieu, Simplice Firmin | - |
dc.contributor.author | POP, Sorin | - |
dc.date.accessioned | 2018-04-12T08:19:48Z | - |
dc.date.available | 2018-04-12T08:19:48Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | IMA JOURNAL OF NUMERICAL ANALYSIS, 39(1), p. 512-544. | - |
dc.identifier.issn | 0272-4979 | - |
dc.identifier.uri | http://hdl.handle.net/1942/25851 | - |
dc.description.abstract | We discuss an O-type multi-point flux approximation finite volume scheme for the discretization of a system modelling two-phase flow in porous media. The particular feature in this model is that dynamic effects are taken into account in the capillary pressure. This leads to a nonlinear system of three evolution equations, written in terms of the nonwetting-phase saturation and of the two pressures. Based on a priori estimates and compactness arguments, we prove the convergence of the numerical approximation to the weak solution. In the final part, we present numerical results that confirm the convergence analysis. These results show that the method is first-order convergent for the flux, and second-order convergent for the saturation and the pressures. | - |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada (to X.C.); Netherlands Organisation for Scientific Research (NWO-NDNS+ project 613.009.012 to S.F.N.); Shell-NWO/FOM CSER programme (14CSER016 to I.S.P.); Odysseus programme of the Research Foundation - Flanders FWO (G0G1316N to I.S.P.). | - |
dc.language.iso | en | - |
dc.publisher | OXFORD UNIV PRESS | - |
dc.rights | The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. | - |
dc.subject.other | two-phase flow in porous media | - |
dc.subject.other | dynamic capillary pressure | - |
dc.subject.other | nonlinear system | - |
dc.subject.other | pseudoparabolic problem | - |
dc.subject.other | finite volume scheme | - |
dc.subject.other | multi-point flux approximation | - |
dc.subject.other | O-method | - |
dc.title | Convergence of an MPFA finite volume scheme for a two‐phase porous media flow model with dynamic capillarity | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 544 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 512 | - |
dc.identifier.volume | 39 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.source.type | Article | - |
dc.identifier.doi | 10.1093/imanum/drx078 | - |
dc.identifier.isi | 000491255100018 | - |
dc.identifier.eissn | 1464-3642 | - |
local.provider.type | Web of Science | - |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.contributor | Cao, Xiulei | - |
item.contributor | Nemadjieu, Simplice Firmin | - |
item.contributor | POP, Sorin | - |
item.fullcitation | Cao, Xiulei; Nemadjieu, Simplice Firmin & POP, Sorin (2019) Convergence of an MPFA finite volume scheme for a two‐phase porous media flow model with dynamic capillarity. In: IMA JOURNAL OF NUMERICAL ANALYSIS, 39(1), p. 512-544.. | - |
item.accessRights | Restricted Access | - |
crisitem.journal.issn | 0272-4979 | - |
crisitem.journal.eissn | 1464-3642 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
IMAXiulei.pdf Restricted Access | Early view | 2.28 MB | Adobe PDF | View/Open Request a copy |
(Revision)Convergence of MPFA finite volume scheme for two phase porous media flow with dynamic capillarity.pdf | Non Peer-reviewed author version | 651.48 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.