Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/25962
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | JAUST, Alexander | - |
dc.contributor.author | Reuter, Balthasar | - |
dc.contributor.author | Aizinger, Vadym | - |
dc.contributor.author | SCHUETZ, Jochen | - |
dc.contributor.author | Knabner, Peter | - |
dc.date.accessioned | 2018-05-07T09:46:22Z | - |
dc.date.available | 2018-05-07T09:46:22Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | COMPUTERS & MATHEMATICS WITH APPLICATIONS, 75 (12), p. 4505-4533 | - |
dc.identifier.issn | 0898-1221 | - |
dc.identifier.uri | http://hdl.handle.net/1942/25962 | - |
dc.description.abstract | The third paper in our series on open source MATLAB / GNU Octave implementation of the discontinuous Galerkin (DG) method(s) focuses on a hybridized formulation. The main aim of this ongoing work is to develop rapid prototyping techniques covering a range of standard DG methodologies and suitable for small to medium sized applications. Our FESTUNG package relies on fully vectorized matrix / vector operations throughout, and all details of the implementation are fully documented. Once again, great care is taken to maintain a direct mapping between discretization terms and code routines as well as to ensure full compatibility to GNU Octave. The current work formulates a hybridized DG scheme for a linear advection problem, describes hybrid approximation spaces on the mesh skeleton, and compares the performance of this discretization to the standard (element-based) DG method for different polynomial orders. | - |
dc.description.sponsorship | The stay of A. Jaust at the University of Erlangen-Nurnberg was supported by the Research Foundation - Flanders (FWO) with a grant for a short study visit abroad and by the Special Research Fund (BOF) of Hasselt University. | - |
dc.language.iso | en | - |
dc.rights | © 2018 Elsevier Ltd. All rights reserved. | - |
dc.subject.other | MATLAB; GNU Octave; hybridized discontinuous Galerkin (HDG) method; vectorization; open source; diagonally implicit Runge-Kutta method (DIRK) | - |
dc.title | FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 4533 | - |
dc.identifier.issue | 12 | - |
dc.identifier.spage | 4505 | - |
dc.identifier.volume | 75 | - |
local.format.pages | 29 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Aizinger, V (reprint author), Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Handelshafen 12, D-27570 Bremerhaven, Germany. alexander.jaust@uhasselt.be; reuter@math.fau.de; aizinger@math.fau.de; jochen.schuetz@uhasselt.be; knabner@math.fau.de | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.status | In press | - |
dc.identifier.doi | 10.1016/j.camwa.2018.03.045 | - |
dc.identifier.isi | 000432886400023 | - |
item.fulltext | With Fulltext | - |
item.contributor | JAUST, Alexander | - |
item.contributor | Reuter, Balthasar | - |
item.contributor | Aizinger, Vadym | - |
item.contributor | SCHUETZ, Jochen | - |
item.contributor | Knabner, Peter | - |
item.fullcitation | JAUST, Alexander; Reuter, Balthasar; Aizinger, Vadym; SCHUETZ, Jochen & Knabner, Peter (2018) FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation. In: COMPUTERS & MATHEMATICS WITH APPLICATIONS, 75 (12), p. 4505-4533. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2019 | - |
crisitem.journal.issn | 0898-1221 | - |
crisitem.journal.eissn | 1873-7668 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FESTUNG-Pt3.pdf | Non Peer-reviewed author version | 6.19 MB | Adobe PDF | View/Open |
1-s2.0-S0898122118301895-main.pdf Restricted Access | Published version | 1.46 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.