Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25962
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJAUST, Alexander-
dc.contributor.authorReuter, Balthasar-
dc.contributor.authorAizinger, Vadym-
dc.contributor.authorSCHUETZ, Jochen-
dc.contributor.authorKnabner, Peter-
dc.date.accessioned2018-05-07T09:46:22Z-
dc.date.available2018-05-07T09:46:22Z-
dc.date.issued2018-
dc.identifier.citationCOMPUTERS & MATHEMATICS WITH APPLICATIONS, 75 (12), p. 4505-4533-
dc.identifier.issn0898-1221-
dc.identifier.urihttp://hdl.handle.net/1942/25962-
dc.description.abstractThe third paper in our series on open source MATLAB / GNU Octave implementation of the discontinuous Galerkin (DG) method(s) focuses on a hybridized formulation. The main aim of this ongoing work is to develop rapid prototyping techniques covering a range of standard DG methodologies and suitable for small to medium sized applications. Our FESTUNG package relies on fully vectorized matrix / vector operations throughout, and all details of the implementation are fully documented. Once again, great care is taken to maintain a direct mapping between discretization terms and code routines as well as to ensure full compatibility to GNU Octave. The current work formulates a hybridized DG scheme for a linear advection problem, describes hybrid approximation spaces on the mesh skeleton, and compares the performance of this discretization to the standard (element-based) DG method for different polynomial orders.-
dc.description.sponsorshipThe stay of A. Jaust at the University of Erlangen-Nurnberg was supported by the Research Foundation - Flanders (FWO) with a grant for a short study visit abroad and by the Special Research Fund (BOF) of Hasselt University.-
dc.language.isoen-
dc.rights© 2018 Elsevier Ltd. All rights reserved.-
dc.subject.otherMATLAB; GNU Octave; hybridized discontinuous Galerkin (HDG) method; vectorization; open source; diagonally implicit Runge-Kutta method (DIRK)-
dc.titleFESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation-
dc.typeJournal Contribution-
dc.identifier.epage4533-
dc.identifier.issue12-
dc.identifier.spage4505-
dc.identifier.volume75-
local.format.pages29-
local.bibliographicCitation.jcatA1-
dc.description.notesAizinger, V (reprint author), Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Handelshafen 12, D-27570 Bremerhaven, Germany. alexander.jaust@uhasselt.be; reuter@math.fau.de; aizinger@math.fau.de; jochen.schuetz@uhasselt.be; knabner@math.fau.de-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusIn press-
dc.identifier.doi10.1016/j.camwa.2018.03.045-
dc.identifier.isi000432886400023-
item.fulltextWith Fulltext-
item.contributorJAUST, Alexander-
item.contributorReuter, Balthasar-
item.contributorAizinger, Vadym-
item.contributorSCHUETZ, Jochen-
item.contributorKnabner, Peter-
item.fullcitationJAUST, Alexander; Reuter, Balthasar; Aizinger, Vadym; SCHUETZ, Jochen & Knabner, Peter (2018) FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation. In: COMPUTERS & MATHEMATICS WITH APPLICATIONS, 75 (12), p. 4505-4533.-
item.accessRightsRestricted Access-
item.validationecoom 2019-
crisitem.journal.issn0898-1221-
crisitem.journal.eissn1873-7668-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
FESTUNG-Pt3.pdfNon Peer-reviewed author version6.19 MBAdobe PDFView/Open
1-s2.0-S0898122118301895-main.pdf
  Restricted Access
Published version1.46 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.