Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25985
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKAISER, Klaus-
dc.contributor.authorSCHUETZ, Jochen-
dc.date.accessioned2018-05-16T14:02:30Z-
dc.date.available2018-05-16T14:02:30Z-
dc.date.issued2018-
dc.identifier.citationJournal of computational and applied mathematics, 343, p. 139-154.-
dc.identifier.issn0377-0427-
dc.identifier.urihttp://hdl.handle.net/1942/25985-
dc.description.abstractWe consider a system of singularly perturbed differential equations with singular parameter ε << 1, discretized with an IMEX Runge-Kutta method. The splitting needed for the IMEX method stems from a linearization of the fluxes around the limit solution. We analyze the asymptotic convergence order as ε → 0. We show that in this setting, the stage order of the implicit part of the scheme is of great importance, thereby explaining earlier numerical results showing a close correlation of errors of the splitting scheme and the fully implicit one.-
dc.description.sponsorshipThe authors would like to thank Sebastian Noelle for fruitful discussions. The first author has been partially supported by the German Research Foundation (DFG) through project NO 361/6-1; his study was supported by the Special Research Fund (BOF) of Hasselt University.-
dc.language.isoen-
dc.subject.otherorder reduction; RS-IMEX; IMEX Runge-Kutta; singularly perturbed equation; asymptotic convergence order-
dc.titleAsymptotic error analysis of an IMEX Runge–Kutta method-
dc.typeJournal Contribution-
dc.identifier.epage154-
dc.identifier.spage139-
dc.identifier.volume343-
local.format.pages18-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.cam.2018.04.044-
dc.identifier.isi000437820000011-
item.contributorKAISER, Klaus-
item.contributorSCHUETZ, Jochen-
item.validationecoom 2019-
item.accessRightsRestricted Access-
item.fullcitationKAISER, Klaus & SCHUETZ, Jochen (2018) Asymptotic error analysis of an IMEX Runge–Kutta method. In: Journal of computational and applied mathematics, 343, p. 139-154..-
item.fulltextWith Fulltext-
crisitem.journal.issn0377-0427-
crisitem.journal.eissn1879-1778-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
main.pdfNon Peer-reviewed author version306.5 kBAdobe PDFView/Open
Kaiser.pdf
  Restricted Access
Published version630.12 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.