Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/25985
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KAISER, Klaus | - |
dc.contributor.author | SCHUETZ, Jochen | - |
dc.date.accessioned | 2018-05-16T14:02:30Z | - |
dc.date.available | 2018-05-16T14:02:30Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Journal of computational and applied mathematics, 343, p. 139-154. | - |
dc.identifier.issn | 0377-0427 | - |
dc.identifier.uri | http://hdl.handle.net/1942/25985 | - |
dc.description.abstract | We consider a system of singularly perturbed differential equations with singular parameter ε << 1, discretized with an IMEX Runge-Kutta method. The splitting needed for the IMEX method stems from a linearization of the fluxes around the limit solution. We analyze the asymptotic convergence order as ε → 0. We show that in this setting, the stage order of the implicit part of the scheme is of great importance, thereby explaining earlier numerical results showing a close correlation of errors of the splitting scheme and the fully implicit one. | - |
dc.description.sponsorship | The authors would like to thank Sebastian Noelle for fruitful discussions. The first author has been partially supported by the German Research Foundation (DFG) through project NO 361/6-1; his study was supported by the Special Research Fund (BOF) of Hasselt University. | - |
dc.language.iso | en | - |
dc.subject.other | order reduction; RS-IMEX; IMEX Runge-Kutta; singularly perturbed equation; asymptotic convergence order | - |
dc.title | Asymptotic error analysis of an IMEX Runge–Kutta method | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 154 | - |
dc.identifier.spage | 139 | - |
dc.identifier.volume | 343 | - |
local.format.pages | 18 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.cam.2018.04.044 | - |
dc.identifier.isi | 000437820000011 | - |
item.contributor | KAISER, Klaus | - |
item.contributor | SCHUETZ, Jochen | - |
item.validation | ecoom 2019 | - |
item.accessRights | Restricted Access | - |
item.fullcitation | KAISER, Klaus & SCHUETZ, Jochen (2018) Asymptotic error analysis of an IMEX Runge–Kutta method. In: Journal of computational and applied mathematics, 343, p. 139-154.. | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 0377-0427 | - |
crisitem.journal.eissn | 1879-1778 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
main.pdf | Non Peer-reviewed author version | 306.5 kB | Adobe PDF | View/Open |
Kaiser.pdf Restricted Access | Published version | 630.12 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.