Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSCHREURS, Dieter-
dc.contributor.authorNAGELS, Steven-
dc.contributor.authorCARDINALETTI, Ilaria-
dc.contributor.authorVANGERVEN, Tim-
dc.contributor.authorCORNELISSEN, Rob-
dc.contributor.authorVODNIK, Jelle-
dc.contributor.authorHRUBY, Jaroslav-
dc.contributor.authorDEFERME, Wim-
dc.contributor.authorMANCA, Jean-
dc.date.accessioned2018-06-21T08:03:33Z-
dc.date.available2018-06-21T08:03:33Z-
dc.date.issued2018-
dc.identifier.citationJOURNAL OF MATERIALS RESEARCH, 33 (13), p. 1841-1852-
dc.identifier.issn0884-2914-
dc.identifier.urihttp://hdl.handle.net/1942/26129-
dc.description.abstractOne of the key aims of the OSCAR project (Optical Sensors based on CARbon-materials)—in the framework of the REXUS/BEXUS program—was to explore the use of organic-based solar cells for (aero)space applications through the in-flight investigation of devices’ performance during a stratospheric balloon flight. Next to the in-flight experiments, complementary lab stability assessment tests were performed. In this contribution, both the in-flight and lab experimental methodology and the corresponding technical aspects will be discussed in detail. Furthermore, attention will be paid to the issues of packaging and radiation. The importance of the OSCAR-balloon experiment is not only that it has demonstrated for the first time the use of organic-based solar cells in (aero)space conditions but also that it can be considered as the pioneering start of specific stability assessment methodologies for organic-based solar cells for (aero)space applications.-
dc.description.sponsorshipThe OSCAR project was developed in the framework of the REXUS/BEXUS program. This program is a joint collaborative agreement between the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), where the Swedish share of the balloon payload is made available for European university student experiments with collaboration of the European Space Agency (ESA). Other partners include EuroLaunch, a collaboration between the Esrange Space Center (SSC), which is the launching facility in Kiruna (Sweden) and the Mobile Rocket Base (MORABA) of DLR. Experts of all involved parties are provided throughout the project for technical support. The authors deeply thank M. De Roeve, R. Lempens, J. Soogen, K. Daniëls, J. Boutsenand J. Mertens for the technical help, and K. Wouters and M.A. Beynaerts for their support during testing. IMEC vzw is acknowledged for their availability with sample supplies and encapsulation. For the small molecule-based devices thanks are due to TU/Dresden. For the polymerbased devices, the authors would like to thank the DSOS research group at Hasselt University. The authors would like to thank Hasselt University for additional financial support.-
dc.language.isoen-
dc.subject.otherOSCAR; OPV; in-situ; organic solar cell; organic photovoltaic; solar cell; aerospace; space-
dc.titleMethodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications-
dc.typeJournal Contribution-
dc.identifier.epage1852-
dc.identifier.issue13-
dc.identifier.spage1841-
dc.identifier.volume33-
local.bibliographicCitation.jcatA1-
dc.description.notesSchreurs, D (reprint author), Hasselt Univ, Inst Mat Res, B-3590 Diepenbeek, Belgium. dieter.schreurs@uhasselt.be-
dc.relation.referencesREFERENCES 1. M. Kaltenbrunner, M. White, E. Glowacki, T. Sekitani, T. Someya, N. Sariciftci, and S. Bauer: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012). 2. G. Pirotte, J. Kesters, P. Verstappen, S. Govaerts, J. Manca, L. Lutsen, D. Vanderzande, and W. Maes: Continuous flow polymer synthesis toward reproducible large-scale production for efficient bulk heterojunction organic solar cells. ChemSusChem 8, 3228–3233 (2015). 3. P. Verstappen, J. Kesters, W. Vanormelingen, G. Heintges, J. Drijkoningen, T. Vangerven, L. Marin, S. Koudjina, B. Champagne, J. Manca, L. Lutsen, D. Vanderzande, and W. Maes: Fluorination as an effective tool to increase the opencircuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b9]dithiophene-alt-quinoxaline) copolymers. J. Mater. Chem. A 3, 2960–2970 (2015). 4. J. Widmer, M. Tietze, K. Leo, and M. Riede: Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23, 5814–5821 (2013). 5. T. Moench, P. Friederich, F. Holzmueller, B. Rutkowski, J. Benduhn, T. Strunk, C. Koerner, K. Vandewal, A. Czyrska-Filemonowicz, W. Wenzel, and K. Leo: Influence of meso and nanoscale structure on the properties of highly efficient small molecule solar cells. Adv. Energy Mater. 6, 1501280 (2016). 6. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D’Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, and J. Manca: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018). 7. I. Cardinaletti: Nano-morphology and macro-performance of organic and perovskite solar cells: From terrestrial to space applications. Ph.D. thesis, 2017. Available at: https://doclib.uhas- AU4 selt.be/dspace/handle/1942/25015. 8. B. Siegmund, A. Mischok, J. Benduhn, O. Zeikq, S. Ullbrich, F. Nehm, M. Böhm, D. Spoltore, H. Fröb, C. Körner, K. Leo, and K. Vandewal: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017). 9. S. Guo, C. Brandt, T. Andreev, E. Metwalli, W. Wang, J. Perlich, and P. Müler-Buschbaum: First step into space: Performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM0 illumination. ACS Appl. Mater. Interfaces 6, 17902–17910 (2014). 10. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, and J.C. Hummelen: Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 38–43 (2004). 11. Y. Park, S. Noh, D. Lee, J.Y. Kim, and C. Lee: Temperature and light intensity dependence of polymer solar cells with MoO3 and PEDOT:PSS as a buffer layer. J. Korean Phys. Soc. 59, 362–366 (2011). 12. A. Kumar, N. Rosen, R. Devine, and Y. Yang: Interface design to improve stability of polymer solar cells for potential space applications. Energy Environ. Sci. 4, 4917–4920 (2011). 13. A. Kumar, R. Devine, C. Mayberry, B. Lei, G. Li, and Y. Yang: Origin of radiation-induced degradation in polymer solar cells. Adv. Funct. Mater. 20, 2729–2736 (2010). 14. V. Voevodskii and Y.N. Molin: On the radiation stability of solid organic compounds. Radiat. Res. 17, 366–378 (1962). 15. F. Lang, N. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V. Brus, J. Rappich, B. Rech, G. Landi, and H. Neitzert: Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 8726–8731 (2016). 16. M. Reese, S. Gevorgyan, M. Jørgensen, E. Bundgaard, S. Kurtz, D. Ginley, D. Olson, M. Lloyd, P. Morvillo, E. Katz, A. Elschner, O. Haillant, T. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J-B. Bonekamp, A. van Breemen, C. Girotto, E. Voroshazi, and F. Krebs: Consensus stability testing protocals for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253–1267 (2011). 17. N. Bristow and J. Kettle: Outdoor performance of organic photovoltaics: Diurnal analysis, dependence on temperature, irradiance, and degradation. J. Renewable Sustainable Energy 7, 013111 (2015). 18. I. Cardinaletti, J. Kesters, S. Bertho, B. Conings, F. Piersimoni, J. D’Haen, L. Lutsen, M. Nesladek, B. Van Mele, G. Van Assche, K. Vandewal, A. Salleo, D. Vanderzande, W. Maes, and J. Manca: Towards bulk heterojunction polymer solar cells with thermally stable active layer morphology. J. Photonics Energy 4, 040997 (2014). 19. S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, D. Vanderzande, J. Manca, A. Senes, and A. Bonfiglio: Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91, 385–389 (2007). 20. H. Zhang, X. Qiao, Y. Shen, and M. Wang: Effect of temperature on the efficiency of organometallic perovskite solar cells. J. Energy Chem. 24, 729–735 (2015).-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusIn Press-
dc.identifier.doi10.1557/jmr.2018.156-
dc.identifier.isi000438739300002-
item.contributorSCHREURS, Dieter-
item.contributorNAGELS, Steven-
item.contributorCARDINALETTI, Ilaria-
item.contributorVANGERVEN, Tim-
item.contributorCORNELISSEN, Rob-
item.contributorVODNIK, Jelle-
item.contributorHRUBY, Jaroslav-
item.contributorDEFERME, Wim-
item.contributorMANCA, Jean-
item.fullcitationSCHREURS, Dieter; NAGELS, Steven; CARDINALETTI, Ilaria; VANGERVEN, Tim; CORNELISSEN, Rob; VODNIK, Jelle; HRUBY, Jaroslav; DEFERME, Wim & MANCA, Jean (2018) Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications. In: JOURNAL OF MATERIALS RESEARCH, 33 (13), p. 1841-1852.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2019-
crisitem.journal.issn0884-2914-
crisitem.journal.eissn2044-5326-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
DSchreursSNagels-MethodologyOfTheFirst.pdfPeer-reviewed author version1.3 MBAdobe PDFView/Open
methodology_of_the_first_combined_inflight_and_ex_situ_stability_assessment_of_organicbased_solar_cells_for_space_applications.pdf
  Restricted Access
Published version1.3 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

9
checked on Apr 30, 2024

Page view(s)

326
checked on Sep 7, 2022

Download(s)

434
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.