Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2618
Title: Grothendieck groups and tilting objects
Authors: Reiten, I
VAN DEN BERGH, Michel 
Issue Date: 2001
Publisher: KLUWER ACADEMIC PUBL
Source: ALGEBRAS AND REPRESENTATION THEORY, 4(1). p. 1-23
Abstract: Let C be a connected Noetherian hereditary Abelian category with a Serre functor over an algebraically closed field k, with finite-dimensional homomorphism and extension spaces, Using the classification of such categories from our 1999 preprint, we prove that if C has some object of infinite length, then the Grothendieck group of C is finitely generated if and only if C has a tilting object.
Notes: Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Reiten, I, Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway.
Keywords: Grothendieck group; tilting object; hereditary Abelian category; hereditary order; quotient category
Document URI: http://hdl.handle.net/1942/2618
ISSN: 1386-923X
e-ISSN: 1572-9079
ISI #: 000171809100001
Category: A1
Type: Journal Contribution
Validations: ecoom 2002
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
0005100v1.pdf252.9 kBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

16
checked on Oct 5, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.