Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2621
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStafford, JT-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-15T14:34:27Z-
dc.date.available2007-11-15T14:34:27Z-
dc.date.issued2001-
dc.identifier.citationBULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 38(2). p. 171-216-
dc.identifier.issn0273-0979-
dc.identifier.urihttp://hdl.handle.net/1942/2621-
dc.description.abstractIn this survey article we describe some geometric results in the theory of noncommutative rings and, more generally, in the theory of abelian categories. Roughly speaking and by analogy with the commutative situation, the category of graded modules modulo torsion over a noncommutative graded ring of quadratic, respectively cubic, growth should be thought of as the noncommutative analogue of a projective curve, respectively surface. This intuition has led to a remarkable number of nontrivial insights and results in noncommutative algebra. Indeed, the problem of classifying noncommutative curves (and noncommutative graded rings of quadratic growth) can be regarded as settled. Despite the fact that no classification of noncommutative surfaces is in sight, a rich body of nontrivial examples and techniques, including blowing up and down, has been developed.-
dc.format.extent578250 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.subject.othernoetherian graded rings; noncommutative projective geometry; deformations; twisted homogeneous coordinate rings.-
dc.titleNoncommutative curves and noncommutative surfaces-
dc.typeJournal Contribution-
dc.identifier.epage216-
dc.identifier.issue2-
dc.identifier.spage171-
dc.identifier.volume38-
local.format.pages46-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Michigan, Dept Math, Ann Arbor, MI 48109 USA. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Stafford, JT, Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000167379000003-
item.fulltextWith Fulltext-
item.contributorStafford, JT-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationStafford, JT & VAN DEN BERGH, Michel (2001) Noncommutative curves and noncommutative surfaces. In: BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 38(2). p. 171-216.-
item.accessRightsClosed Access-
item.validationecoom 2002-
crisitem.journal.issn0273-0979-
crisitem.journal.eissn1088-9485-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
9910082v2.pdf564.7 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.