Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/2621
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stafford, JT | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-15T14:34:27Z | - |
dc.date.available | 2007-11-15T14:34:27Z | - |
dc.date.issued | 2001 | - |
dc.identifier.citation | BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 38(2). p. 171-216 | - |
dc.identifier.issn | 0273-0979 | - |
dc.identifier.uri | http://hdl.handle.net/1942/2621 | - |
dc.description.abstract | In this survey article we describe some geometric results in the theory of noncommutative rings and, more generally, in the theory of abelian categories. Roughly speaking and by analogy with the commutative situation, the category of graded modules modulo torsion over a noncommutative graded ring of quadratic, respectively cubic, growth should be thought of as the noncommutative analogue of a projective curve, respectively surface. This intuition has led to a remarkable number of nontrivial insights and results in noncommutative algebra. Indeed, the problem of classifying noncommutative curves (and noncommutative graded rings of quadratic growth) can be regarded as settled. Despite the fact that no classification of noncommutative surfaces is in sight, a rich body of nontrivial examples and techniques, including blowing up and down, has been developed. | - |
dc.format.extent | 578250 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | AMER MATHEMATICAL SOC | - |
dc.subject.other | noetherian graded rings; noncommutative projective geometry; deformations; twisted homogeneous coordinate rings. | - |
dc.title | Noncommutative curves and noncommutative surfaces | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 216 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 171 | - |
dc.identifier.volume | 38 | - |
local.format.pages | 46 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Stafford, JT, Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.isi | 000167379000003 | - |
item.fulltext | With Fulltext | - |
item.contributor | Stafford, JT | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | Stafford, JT & VAN DEN BERGH, Michel (2001) Noncommutative curves and noncommutative surfaces. In: BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 38(2). p. 171-216. | - |
item.accessRights | Closed Access | - |
item.validation | ecoom 2002 | - |
crisitem.journal.issn | 0273-0979 | - |
crisitem.journal.eissn | 1088-9485 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
9910082v2.pdf | 564.7 kB | Adobe PDF | View/Open |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.