Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/2622
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SEVENHANT, Bert | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-15T14:34:36Z | - |
dc.date.available | 2007-11-15T14:34:36Z | - |
dc.date.issued | 2001 | - |
dc.identifier.citation | JOURNAL OF PURE AND APPLIED ALGEBRA, 160(2-3). p. 319-332 | - |
dc.identifier.issn | 0022-4049 | - |
dc.identifier.uri | http://hdl.handle.net/1942/2622 | - |
dc.description.abstract | In this paper we show that the Hall algebra of a quiver, as defined by Ringel, is the positive part of the quantived enveloping algebra of a generalized Kac-Moody Lie algebra. We give a potential application of this result to a conjecture of Kac which states that the constant coefficient of the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. (C) 2001 Elsevier Science B.V. All rights reserved. | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.title | A relation between a conjecture of Kac and the structure of the Hall algebra | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 332 | - |
dc.identifier.issue | 2-3 | - |
dc.identifier.spage | 319 | - |
dc.identifier.volume | 160 | - |
local.format.pages | 14 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Van den Bergh, M, Limburgs Univ Ctr, Dept WNI, Univ Campus,Bldg D, B-3590 Diepenbeek, Belgium. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.isi | 000169266500011 | - |
item.fulltext | No Fulltext | - |
item.contributor | SEVENHANT, Bert | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | SEVENHANT, Bert & VAN DEN BERGH, Michel (2001) A relation between a conjecture of Kac and the structure of the Hall algebra. In: JOURNAL OF PURE AND APPLIED ALGEBRA, 160(2-3). p. 319-332. | - |
item.accessRights | Closed Access | - |
item.validation | ecoom 2002 | - |
crisitem.journal.issn | 0022-4049 | - |
crisitem.journal.eissn | 1873-1376 | - |
Appears in Collections: | Research publications |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.