Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWAUTERS, Paul-
dc.date.accessioned2007-11-15T14:34:58Z-
dc.date.available2007-11-15T14:34:58Z-
dc.date.issued2001-
dc.identifier.citationCOMMUNICATIONS IN ALGEBRA, 29(11). p. 5179-5190-
dc.identifier.issn0092-7872-
dc.identifier.urihttp://hdl.handle.net/1942/2624-
dc.description.abstractThe semicentre of an arbitrary group algebra K[G] is studied. In particular necessary and sufficient conditions are shown such that the semicentre is equal to a fixed subring of K[Delta (G)]. Also the semicentre is always equal to a sum of centres of certain subgroup algebras.-
dc.language.isoen-
dc.publisherMARCEL DEKKER INC-
dc.titleThe semicentre of a group algebra. II-
dc.typeJournal Contribution-
dc.identifier.epage5190-
dc.identifier.issue11-
dc.identifier.spage5179-
dc.identifier.volume29-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesLimburgs Univ Ctr, Dept Math, B-3610 Diepenbeek, Belgium.Wauters, P, Limburgs Univ Ctr, Dept Math, Univ Campus, B-3610 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000171545700024-
item.fulltextNo Fulltext-
item.validationecoom 2002-
item.contributorWAUTERS, Paul-
item.fullcitationWAUTERS, Paul (2001) The semicentre of a group algebra. II. In: COMMUNICATIONS IN ALGEBRA, 29(11). p. 5179-5190.-
item.accessRightsClosed Access-
crisitem.journal.issn0092-7872-
crisitem.journal.eissn1532-4125-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Jul 1, 2022

Page view(s)

44
checked on Jul 1, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.