Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/26257
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Simm, J. | - |
dc.contributor.author | Arany, A. | - |
dc.contributor.author | Zakeri, P. | - |
dc.contributor.author | HABER, Tom | - |
dc.contributor.author | Wegner, J. K. | - |
dc.contributor.author | Chupakhin, V. | - |
dc.contributor.author | Ceulemans, H. | - |
dc.contributor.author | Moreau, Y. | - |
dc.date.accessioned | 2018-06-29T10:35:48Z | - |
dc.date.available | 2018-06-29T10:35:48Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Ueda, Naonori; Watanabe, Shinji; Matsui, Tomoko; Chien, Jen-Tzung; Larsen, Jan (Ed.). Proceedings of MLSP2017, IEEE, | - |
dc.identifier.isbn | 9781509063413 | - |
dc.identifier.issn | 2161-0363 | - |
dc.identifier.uri | http://hdl.handle.net/1942/26257 | - |
dc.description.abstract | Bayesian matrix factorization is a method of choice for making predictions for large-scale incomplete matrices, due to availability of efficient Gibbs sampling schemes and its robustness to overfitting. In this paper, we consider factorization of large scale matrices with high-dimensional side information. However, sampling the link matrix for the side information with standard approaches costs O (F-3) time, where F is the dimensionality of the features. To overcome this limitation we, firstly, propose a prior for the link matrix whose strength is proportional to the scale of latent variables. Secondly, using this prior we derive an efficient sampler, with linear complexity in the number of non-zeros, O (N-nz), by leveraging Krylov subspace methods, such as block conjugate gradient, allowing us to handle million-dimensional side information. We demonstrate the effectiveness of our proposed method in drug-protein interaction prediction task. | - |
dc.description.sponsorship | Jaak Simm, Adam Arany, Pooya Zakeri and Yves Moreau are funded by Research Council KU Leuven (CoE PFV/10/016 SymBioSys) and by Flemish Government (IOF, Hercules Stitching, iMinds Medical Information Technologies SBO 2015, IWT: O&O ExaScience Life Pharma; ChemBioBridge, Exaptation, PhD grants). | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.relation.ispartofseries | IEEE International Workshop on Machine Learning for Signal Processing | - |
dc.rights | Copyright ©2017 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved | - |
dc.subject.other | matrix factorization; side information; high scale machine learning; MCMC | - |
dc.title | Macau: scalable Bayesian factorization with high-dimensional side information using MCMC | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | Ueda, Naonori | - |
local.bibliographicCitation.authors | Watanabe, Shinji | - |
local.bibliographicCitation.authors | Matsui, Tomoko | - |
local.bibliographicCitation.authors | Chien, Jen-Tzung | - |
local.bibliographicCitation.authors | Larsen, Jan | - |
local.bibliographicCitation.conferencedate | 25-28/09/2017 | - |
local.bibliographicCitation.conferencename | 27th IEEE International Workshop on Machine Learning for Signal Processing (MLSP) | - |
local.bibliographicCitation.conferenceplace | Int House Japan - Tokyo, Japan | - |
local.bibliographicCitation.jcat | C1 | - |
dc.description.notes | Simm, J (reprint author), Katholieke Univ Leuven, ESAT STADIUS, B-3001 Heverlee, Belgium, | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.identifier.doi | 10.1109/MLSP.2017.8168143 | - |
dc.identifier.isi | 000425458700038 | - |
local.bibliographicCitation.btitle | Proceedings of MLSP2017 | - |
item.fulltext | With Fulltext | - |
item.contributor | Simm, J. | - |
item.contributor | Arany, A. | - |
item.contributor | Zakeri, P. | - |
item.contributor | HABER, Tom | - |
item.contributor | Wegner, J. K. | - |
item.contributor | Chupakhin, V. | - |
item.contributor | Ceulemans, H. | - |
item.contributor | Moreau, Y. | - |
item.fullcitation | Simm, J.; Arany, A.; Zakeri, P.; HABER, Tom; Wegner, J. K.; Chupakhin, V.; Ceulemans, H. & Moreau, Y. (2017) Macau: scalable Bayesian factorization with high-dimensional side information using MCMC. In: Ueda, Naonori; Watanabe, Shinji; Matsui, Tomoko; Chien, Jen-Tzung; Larsen, Jan (Ed.). Proceedings of MLSP2017, IEEE,. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2019 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
macau.pdf Restricted Access | Published version | 177.88 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.