Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26265
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRAKHMAWATI, Trias Wahyuni-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorFAES, Christel-
dc.date.accessioned2018-06-29T11:46:41Z-
dc.date.available2018-06-29T11:46:41Z-
dc.date.issued2018-
dc.identifier.citationBIOMETRICAL JOURNAL, 60(2), p. 369-380-
dc.identifier.issn0323-3847-
dc.identifier.urihttp://hdl.handle.net/1942/26265-
dc.description.abstractThe main objective of this paper is to evaluate the influence of individual subjects exerted on a random-effects model for repeated measures, where the random effects follow a mixture distribution. The diagnostic tool is based on local influence with perturbation scheme that explicitly targets influences resulting from perturbing the mixture component probabilities. Bruckers, Molenberghs, Verbeke, and Geys (2016) considered a similar model, but focused on influences stemming from perturbing a subject's likelihood contributions as a whole. We also compare the two types of perturbation. Our results are illustrated using linear mixed models fitted to data from three studies. A simulation study is also conducted in order to strengthen the result from case studies.-
dc.language.isoen-
dc.subject.otherlocal influence; mixture model for random-effects; perturbation-
dc.titleLocal influence diagnostics for hierarchical finite-mixture random-effects models-
dc.typeJournal Contribution-
dc.identifier.epage380-
dc.identifier.issue2-
dc.identifier.spage369-
dc.identifier.volume60-
local.bibliographicCitation.jcatA1-
dc.description.notesRakhmawati, TW (reprint author), Hasselt Univ, I BioStat, B-3500 Hasselt, Belgium, triaswahyuni.rakhmawati@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/bimj.201600203-
dc.identifier.isi000426492900011-
item.validationecoom 2019-
item.contributorRAKHMAWATI, Trias Wahyuni-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.contributorFAES, Christel-
item.fullcitationRAKHMAWATI, Trias Wahyuni; MOLENBERGHS, Geert; VERBEKE, Geert & FAES, Christel (2018) Local influence diagnostics for hierarchical finite-mixture random-effects models. In: BIOMETRICAL JOURNAL, 60(2), p. 369-380.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0323-3847-
crisitem.journal.eissn1521-4036-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
rakhmawati 1.pdf
  Restricted Access
Published version1.37 MBAdobe PDFView/Open    Request a copy
locinfNL21.pdf
  Restricted Access
Peer-reviewed author version3.19 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.