Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26283
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTabuada, Goncalo-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2018-07-10T10:40:03Z-
dc.date.available2018-07-10T10:40:03Z-
dc.date.issued2018-
dc.identifier.citationTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 370(1), p. 421-446-
dc.identifier.issn0002-9947-
dc.identifier.urihttp://hdl.handle.net/1942/26283-
dc.description.abstractLet X be a smooth scheme, Z a smooth closed subscheme, and U the open complement. Given any localizing and A(1)-homotopy invariant of dg categories E, we construct an associated Gysin triangle relating the value of E at the dg categories of perfect complexes of X, Z, and U. In the particular case where E is homotopy K-theory, this Gysin triangle yields a new proof of Quillen's localization theorem, which avoids the use of devissage. As a first application, we prove that the value of E at a smooth scheme belongs to the smallest (thick) triangulated subcategory generated by the values of E at the smooth projective schemes. As a second application, we compute the additive invariants of relative cellular spaces in terms of the bases of the corresponding cells. Finally, as a third application, we construct explicit bridges relating motivic homotopy theory and mixed motives on the one side with noncommutative mixed motives on the other side. This leads to a comparison between different motivic Gysin triangles as well as to an etale descent result concerning noncommutative mixed motives with rational coefficients.-
dc.description.sponsorshipThe first author was partially supported by the NSF CAREER Award #1350472 and by the Portuguese Foundation for Science and Technology grant PEst-OE/MAT/UI0297/2014.-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.rights(C) 2017 American Mathematical society-
dc.subject.otherLocalization; A(1)-homotopy; dg category; algebraic K-theory; periodic cyclic homology; algebraic spaces; motivic homotopy theory; (noncommutative) mixed motives; Nisnevich and etale descent; relative cellular spaces; noncommutative algebraic geometry-
dc.subject.otherlocalization; A(1)-homotopy; dg category; algebraic K-theory; periodic cyclic homology; algebraic spaces; motivic homotopy theory; (noncommutative) mixed motives; Nisnevich and etale descent; relative cellular spaces; noncommutative algebraic geometry-
dc.titleThe Gysin triangle via localization and A(1)-homotopy invariance-
dc.typeJournal Contribution-
dc.identifier.epage446-
dc.identifier.issue1-
dc.identifier.spage421-
dc.identifier.volume370-
local.format.pages26-
local.bibliographicCitation.jcatA1-
dc.description.notes[Tabuada, Goncalo] MIT, Dept Math, Cambridge, MA 02139 USA. [Tabuada, Goncalo] Univ Nova Lsiboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal. [Tabuada, Goncalo] Univ Nova Lsiboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Quinta Da Torre, Caparica, Portugal. [Van den Bergh, Michel] Univ Hasselt, Dept WNI, B-3590 Diepenbeek, Belgium.-
local.publisher.placePROVIDENCE-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1090/tran/6956-
dc.identifier.isi000414149300014-
item.fulltextWith Fulltext-
item.contributorTabuada, Goncalo-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationTabuada, Goncalo & VAN DEN BERGH, Michel (2018) The Gysin triangle via localization and A(1)-homotopy invariance. In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 370(1), p. 421-446.-
item.accessRightsRestricted Access-
item.validationecoom 2018-
crisitem.journal.issn0002-9947-
crisitem.journal.eissn1088-6850-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Bergh.pdf
  Restricted Access
Published version428.04 kBAdobe PDFView/Open    Request a copy
1510.04677.pdfNon Peer-reviewed author version406.81 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.