Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/26392
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | RAEDSCHELDERS, Theo | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2018-07-20T11:44:47Z | - |
dc.date.available | 2018-07-20T11:44:47Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | JOURNAL OF NONCOMMUTATIVE GEOMETRY, 11(3), p. 845-885 | - |
dc.identifier.issn | 1661-6952 | - |
dc.identifier.uri | http://hdl.handle.net/1942/26392 | - |
dc.description.abstract | In our companion paper "The Manin Hopf algebra of a Koszul Artin-Schelter regular algebra is quasi-hereditary" we used the Tannaka-Krein formalism to study the universal coacting Hopf algebra (aut)under bar(A) for a Koszul Artin-Schelter regular algebra A. In this paper we study in detail the case A = k[x, y]. In particular we give a more precise description of the standard and costandard representations of (aut)under bar(A) as a coalgebra and we show that the latter can be obtained by induction from a Borel quotient algebra. Finally we give a combinatorial characterization of the simple (aut)under bar(A)-representations as tensor products of (end)under bar(A)-representations and their duals. | - |
dc.language.iso | en | - |
dc.publisher | EUROPEAN MATHEMATICAL SOC | - |
dc.rights | © European Mathematical Society | - |
dc.subject.other | Hopf algebras; monoidal categories; quasi-hereditary algebras | - |
dc.subject.other | Hopf algebras; monoidal categories; quasi-hereditary algebras | - |
dc.title | The representation theory of non-commutative O(GL(2)) | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 885 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 845 | - |
dc.identifier.volume | 11 | - |
local.format.pages | 41 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Raedschelders, Theo; Van den Bergh, Michel] FWO, Brussels, Belgium. [Raedschelders, Theo] Vrije Univ Brussel, Dept Wiskunde, Pl Laan 2, B-1050 Elsene, Belgium. [Van den Bergh, Michel] Univ Hasselt, Dept WNI, Univ Campus, B-3590 Diepenbeek, Belgium. | - |
local.publisher.place | ZURICH | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.4171/JNCG/11-3-3 | - |
dc.identifier.isi | 000418004600003 | - |
item.fulltext | With Fulltext | - |
item.contributor | RAEDSCHELDERS, Theo | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | RAEDSCHELDERS, Theo & VAN DEN BERGH, Michel (2017) The representation theory of non-commutative O(GL(2)). In: JOURNAL OF NONCOMMUTATIVE GEOMETRY, 11(3), p. 845-885. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2019 | - |
crisitem.journal.issn | 1661-6952 | - |
crisitem.journal.eissn | 1661-6960 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
raedschelders2017.pdf Restricted Access | Published version | 401.67 kB | Adobe PDF | View/Open Request a copy |
Vandenbergh.pdf | Non Peer-reviewed author version | 399.9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.