Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/263
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAERTS, Marc-
dc.contributor.authorCLAESKENS, Gerda-
dc.contributor.authorHART, Jeffrey-
dc.date.accessioned2004-08-31T09:23:31Z-
dc.date.available2004-08-31T09:23:31Z-
dc.date.issued2000-
dc.identifier.citationBiometrika, 87(2). p. 405-424-
dc.identifier.issn0006-3444-
dc.identifier.urihttp://hdl.handle.net/1942/263-
dc.description.abstractWe study lack-of-fit tests based on orthogonal series estimators. A common feature of these tests is that they are functions of score statistics that employ data-driven model dimensions. The criteria used to select the dimension are score-based versions of Are and BIC. The tests can be applied in a wide variety of settings, including both continuous and discrete data. With two or more covariates, a model sequence, i.e. a path in the alternative models space, has to be chosen. Critical points and p-values of the lack-of-fit tests can be obtained via asymptotic distribution theory or by use of the bootstrap. Data examples and a simulation study illustrate the applicability of the tests.-
dc.language.isoen-
dc.publisherBIOMETRIKA TRUST-
dc.subjectNon and semiparametric methods-
dc.titleTesting lack of fit in multiple regression-
dc.typeJournal Contribution-
dc.identifier.epage424-
dc.identifier.issue2-
dc.identifier.spage405-
dc.identifier.volume87-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1093/biomet/87.2.405-
dc.identifier.isi000087815100012-
item.fullcitationAERTS, Marc; CLAESKENS, Gerda & HART, Jeffrey (2000) Testing lack of fit in multiple regression. In: Biometrika, 87(2). p. 405-424.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
item.validationecoom 2001-
item.contributorAERTS, Marc-
item.contributorCLAESKENS, Gerda-
item.contributorHART, Jeffrey-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.