Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGIELEN, Bjorn-
dc.contributor.authorMarchal, S.-
dc.contributor.authorJORDENS, Jeroen-
dc.contributor.authorTHOMASSEN, Leen-
dc.contributor.authorBRAEKEN, Leen-
dc.contributor.authorVan Gerven, Tom-
dc.date.accessioned2018-07-31T10:10:37Z-
dc.date.available2018-07-31T10:10:37Z-
dc.date.issued2016-
dc.identifier.citationULTRASONICS SONOCHEMISTRY, 31, p. 463-472-
dc.identifier.issn1350-4177-
dc.identifier.urihttp://hdl.handle.net/1942/26507-
dc.description.abstractIn the present work, the influence of gas addition is investigated on both sonoluminescence (SL) and radical formation at 47 and 248 kHz. The frequencies chosen in this study generate two distinct bubble types, allowing to generalize the conclusions for other ultrasonic reactors. In this case, 47 kHz provides transient bubbles, while stable ones dominate at 248 kHz. For both bubble types, the hydroxyl radical and SL yield under gas addition followed the sequence: Ar > Air > N-2 >> CO2. A comprehensive interpretation is given for these results, based on a combination of thermal gas properties, chemical reactions occurring within the cavitation bubble, and the amount of bubbles. Furthermore, in the cases where argon, air and nitrogen were bubbled, a reasonable correlation existed between the OH-radical yield and the SL signal, being most pronounced under stable cavitation at 248 kHz. Presuming that SL and OH originate from different bubble populations, the results indicate that both populations respond similarly to a change in acoustic power and dissolved gas. Consequently, in the presence of non-volatile pollutants that do not quench SL, sonoluminescence can be used as an online tool to qualitatively monitor radical formation. (C) 2016 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipThe research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement no NMP2-SL-2012-309874 (ALTEREGO). J. Jordens acknowledges funding of a Ph.D. grant by the Agency for Innovation by Science and Technology (IWT).-
dc.language.isoen-
dc.rights(C) 2016 Elsevier B.V. All rights reserved.-
dc.subject.otherultrasound; gases; sonoluminescence; radical formation-
dc.titleInfluence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor-
dc.typeJournal Contribution-
dc.identifier.epage472-
dc.identifier.spage463-
dc.identifier.volume31-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.classdsPublValOverrule/internal_author_not_expected-
local.classIncludeIn-ExcludeFrom-List/ExcludeFromFRIS-
dc.identifier.doi10.1016/j.ultsonch.2016.02.001-
dc.identifier.isi000373419900056-
item.contributorGIELEN, Bjorn-
item.contributorMarchal, S.-
item.contributorJORDENS, Jeroen-
item.contributorTHOMASSEN, Leen-
item.contributorBRAEKEN, Leen-
item.contributorVan Gerven, Tom-
item.fullcitationGIELEN, Bjorn; Marchal, S.; JORDENS, Jeroen; THOMASSEN, Leen; BRAEKEN, Leen & Van Gerven, Tom (2016) Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor. In: ULTRASONICS SONOCHEMISTRY, 31, p. 463-472.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1350-4177-
crisitem.journal.eissn1873-2828-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Influence.pdf
  Restricted Access
Published version548.8 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

10
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

35
checked on May 2, 2024

Page view(s)

54
checked on Sep 7, 2022

Download(s)

44
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.