Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2654
Title: Non-parametric estimation of the residual distribution
Authors: Akritas, Michael Georgiou
VAN KEILEGOM, Ingrid 
Issue Date: 2001
Publisher: BLACKWELL PUBL LTD
Source: SCANDINAVIAN JOURNAL OF STATISTICS, 28(3). p. 549-567
Abstract: Consider a heteroscedastic regression model Y = m(X) + sigma (X)epsilon, where the functions m and sigma are "smooth", and epsilon is independent of X. An estimator of the distribution of epsilon based on non-parametric regression residuals is proposed and its weak convergence is obtained. Applications to prediction intervals and goodness-of-fit tests are discussed.
Notes: Limburgs Univ Ctr, Diepenbeek, Belgium. Penn State Univ, University Pk, PA 16802 USA.Van Keilegom, I, Univ Catholique Louvain, Inst Stat, Voie du Roman Pays 20, B-1348 Louvain, Belgium.
Keywords: asymptotic representation; goodness-of-fit; non-parametric regression residuals; prediction intervals; residual distribution; weak convergence
Document URI: http://hdl.handle.net/1942/2654
ISSN: 0303-6898
e-ISSN: 1467-9469
DOI: 10.1111/1467-9469.00254
ISI #: 000170679000010
Category: A1
Type: Journal Contribution
Validations: ecoom 2002
Appears in Collections:Research publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.