Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalome, Pedro M. P.-
dc.contributor.authorVERMANG, Bart-
dc.contributor.authorRibeiro-Andrade, Rodrigo-
dc.contributor.authorTeixeira, Jennifer P.-
dc.contributor.authorCunha, Jose M. V.-
dc.contributor.authorMendes, Manuel J.-
dc.contributor.authorHaque, Sirazul-
dc.contributor.authorBorme, Jerome-
dc.contributor.authorAguas, Hugo-
dc.contributor.authorFortunato, Elvira-
dc.contributor.authorMartins, Rodrigo-
dc.contributor.authorGonzalez, Juan C.-
dc.contributor.authorLeitao, Joaquim P.-
dc.contributor.authorFernandes, Paulo A.-
dc.contributor.authorEdoff, Marika-
dc.contributor.authorSadewasser, Sascha-
dc.date.accessioned2018-08-02T10:31:29Z-
dc.date.available2018-08-02T10:31:29Z-
dc.date.issued2018-
dc.identifier.citationADVANCED MATERIALS INTERFACES, 5(2) (Art N° 1701101)-
dc.identifier.issn2196-7350-
dc.identifier.urihttp://hdl.handle.net/1942/26540-
dc.description.abstractThin film solar cells based in Cu(In,Ga)Se-2 (CIGS) are among the most efficient polycrystalline solar cells, surpassing CdTe and even polycrystalline silicon solar cells. For further developments, the CIGS technology has to start incorporating different solar cell architectures and strategies that allow for very low interface recombination. In this work, ultrathin 350 nm CIGS solar cells with a rear interface passivation strategy are studied and characterized. The rear passivation is achieved using an Al2O3 nanopatterned point structure. Using the cell results, photoluminescence measurements, and detailed optical simulations based on the experimental results, it is shown that by including the nanopatterned point contact structure, the interface defect concentration lowers, which ultimately leads to an increase of solar cell electrical performance mostly by increase of the open circuit voltage. Gains to the short circuit current are distributed between an increased rear optical reflection and also due to electrical effects. The approach of mixing several techniques allows us to make a discussion considering the different passivation gains, which has not been done in detail in previous works. A solar cell with a nanopatterned rear contact and a 350 nm thick CIGS absorber provides an average power conversion efficiency close to 10%.-
dc.description.sponsorshipP.M.P.S. acknowledges the funding of Fundacao para Ciencia e Tecnologia (FCT) through the project IF/00133/2015. B.V. has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 715027). CAPES (CAPES-INL 04/14), CNPq, and FAPEMIG funding agencies are acknowledged for financial support. The European Union's Horizon 2020 research and innovation programme (grant agreement no. 720887) ARCIGS-M project is acknowledged. M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. This project was partially supported by FEDER funds, through the COMPETE 2020 Program, and national funds, through the FCT, under the projects POCI-01-0145-FEDER-007688 (Reference UID/CTM/50025) and ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The authors also acknowledge partial funding from the European Project BET-EU (H2020-TWINN-2015, grant 692373). The NanoFabrication department at INL, namely Joao Gaspar and Helder Fonseca, are recognized for the help in the development of the nanopatterning process.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.subject.otherCu(In, Ga)Se-2 (CIGS); nanofabrication; passivation; photovoltaics; semiconductors; thin film solar cells-
dc.subject.otherCu(In, Ga)Se-2 (CIGS); nanofabrication; passivation; photovoltaics; semiconductors; thin film solar cells-
dc.titlePassivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer-
dc.typeJournal Contribution-
dc.identifier.issue2-
dc.identifier.volume5-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notes[Salome, Pedro M. P.; Ribeiro-Andrade, Rodrigo; Cunha, Jose M. V.; Borme, Jerome; Fernandes, Paulo A.; Sadewasser, Sascha] Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal. [Salome, Pedro M. P.; Teixeira, Jennifer P.; Leitao, Joaquim P.; Fernandes, Paulo A.] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal. [Vermang, Bart] Univ Hasselt Partner Solliance, Agoralaan Gebouw H, B-3590 Diepenbeek, Belgium. [Vermang, Bart] Imec Partner Solliance, Kapeldreef 75, B-3001 Leuven, Belgium. [Vermang, Bart] Imomec Partner Solliance, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. [Ribeiro-Andrade, Rodrigo; Gonzalez, Juan C.] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. [Cunha, Jose M. V.; Mendes, Manuel J.; Haque, Sirazul; Aguas, Hugo; Fortunato, Elvira; Martins, Rodrigo] Univ Nova Lisboa, Fac Sci & Technol, Dept Mat Sci, CENIMAT i3N, P-2829516 Caparica, Portugal. [Cunha, Jose M. V.; Mendes, Manuel J.; Haque, Sirazul; Aguas, Hugo; Fortunato, Elvira; Martins, Rodrigo] CEMOP UNINOVA, Campus Caparica, P-2829516 Caparica, Portugal. [Fernandes, Paulo A.] Inst Politecn Porto, Inst Super Engn Porto, Dept Fis, CIETI, Rua Dr Antonio Bernardino Almeida 431, P-4200072 Oporto, Portugal. [Edoff, Marika] Uppsala Univ, Angstrom Solar Ctr, Angstrom Lab, Solid State Elect, SE-75121 Uppsala, Sweden.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr1701101-
local.type.programmeH2020-
local.relation.h2020715027-
dc.identifier.doi10.1002/admi.201701101-
dc.identifier.isi000423173800013-
item.fullcitationSalome, Pedro M. P.; VERMANG, Bart; Ribeiro-Andrade, Rodrigo; Teixeira, Jennifer P.; Cunha, Jose M. V.; Mendes, Manuel J.; Haque, Sirazul; Borme, Jerome; Aguas, Hugo; Fortunato, Elvira; Martins, Rodrigo; Gonzalez, Juan C.; Leitao, Joaquim P.; Fernandes, Paulo A.; Edoff, Marika & Sadewasser, Sascha (2018) Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer. In: ADVANCED MATERIALS INTERFACES, 5(2) (Art N° 1701101).-
item.fulltextWith Fulltext-
item.validationecoom 2019-
item.contributorSalome, Pedro M. P.-
item.contributorVERMANG, Bart-
item.contributorRibeiro-Andrade, Rodrigo-
item.contributorTeixeira, Jennifer P.-
item.contributorCunha, Jose M. V.-
item.contributorMendes, Manuel J.-
item.contributorHaque, Sirazul-
item.contributorBorme, Jerome-
item.contributorAguas, Hugo-
item.contributorFortunato, Elvira-
item.contributorMartins, Rodrigo-
item.contributorGonzalez, Juan C.-
item.contributorLeitao, Joaquim P.-
item.contributorFernandes, Paulo A.-
item.contributorEdoff, Marika-
item.contributorSadewasser, Sascha-
item.accessRightsRestricted Access-
crisitem.journal.issn2196-7350-
crisitem.journal.eissn2196-7350-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Salom-_et_al-2018-Advanced_Materials_Interfaces.pdf
  Restricted Access
Published version1.24 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

25
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

62
checked on Sep 28, 2024

Page view(s)

158
checked on Sep 5, 2022

Download(s)

134
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.