Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2654
Title: Non-parametric estimation of the residual distribution
Authors: Akritas, Michael Georgiou
VAN KEILEGOM, Ingrid 
Issue Date: 2001
Publisher: BLACKWELL PUBL LTD
Source: SCANDINAVIAN JOURNAL OF STATISTICS, 28(3). p. 549-567
Abstract: Consider a heteroscedastic regression model Y = m(X) + sigma (X)epsilon, where the functions m and sigma are "smooth", and epsilon is independent of X. An estimator of the distribution of epsilon based on non-parametric regression residuals is proposed and its weak convergence is obtained. Applications to prediction intervals and goodness-of-fit tests are discussed.
Notes: Limburgs Univ Ctr, Diepenbeek, Belgium. Penn State Univ, University Pk, PA 16802 USA.Van Keilegom, I, Univ Catholique Louvain, Inst Stat, Voie du Roman Pays 20, B-1348 Louvain, Belgium.
Keywords: asymptotic representation; goodness-of-fit; non-parametric regression residuals; prediction intervals; residual distribution; weak convergence
Document URI: http://hdl.handle.net/1942/2654
ISSN: 0303-6898
e-ISSN: 1467-9469
DOI: 10.1111/1467-9469.00254
ISI #: 000170679000010
Category: A1
Type: Journal Contribution
Validations: ecoom 2002
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

143
checked on Aug 29, 2025

WEB OF SCIENCETM
Citations

143
checked on Aug 31, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.