Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26571
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAREGAY, Mehreteab-
dc.contributor.authorLAWSON, Andrew-
dc.contributor.authorFAES, Christel-
dc.contributor.authorKirby, Russell S.-
dc.contributor.authorCarroll, Rachel-
dc.contributor.authorWATJOU, Kevin-
dc.date.accessioned2018-08-03T08:52:46Z-
dc.date.available2018-08-03T08:52:46Z-
dc.date.issued2018-
dc.identifier.citationENVIRONMETRICS, 29(1) (Art N° e2477)-
dc.identifier.issn1180-4009-
dc.identifier.urihttp://hdl.handle.net/1942/26571-
dc.description.abstractIt is our primary focus to study the spatial distribution of disease incidence at different geographical levels. Often, spatial data are available in the form of aggregation at multiple scale levels such as census tract, county, and state. When data are aggregated from a fine (e.g., county) to a coarse (e.g., state) geographical level, there will be loss of information. The problem is more challenging when excessive zeros are available at the fine level. After data aggregation, the excessive zeros at the fine level will be reduced at the coarse level. If we ignore the zero inflation and the aggregation effect, we could get inconsistent risk estimates at the fine and coarse levels. Hence, in this paper, we address those problems using zero-inflated multiscale models that jointly describe the risk variations at different geographical levels. For the excessive zeros at the fine level, we use a zero-inflated convolution model, whereas we consider a regular convolution model for the smoothed data at the coarse level. These methods provide a consistent risk estimate at the fine and coarse levels when high percentages of structural zeros are present in the data.-
dc.description.sponsorshipNational Institute for Health Research [R01CA172805]; National Institutes of Health [R01CA172805]-
dc.language.isoen-
dc.publisherWILEY-
dc.rightsCopyright © 2017 John Wiley & Sons, Ltd-
dc.subject.othermultiscale models; sampling zeros; scaling effects; structural zeros; zero-inflated models-
dc.subject.othermultiscale models; sampling zeros; scaling effects; structural zeros; zero-inflated models-
dc.titleZero-inflated multiscale models for aggregated small area health data-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume29-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notes[Aregay, Mehreteab; Lawson, Andrew B.] Med Univ South Carolina, Dept Publ Hlth, Charleston, SC 29425 USA. [Faes, Christel; Watjou, Kevin] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat, Diepenbeek, Belgium. [Kirby, Russell S.] Univ S Florida, Dept Community & Family Hlth, Tampa, FL USA. [Carroll, Rachel] NIEHS, Biostat & Computat Biol Branch, Durham, NC USA.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre2477-
dc.identifier.doi10.1002/env.2477-
dc.identifier.isi000419343200001-
item.validationecoom 2019-
item.contributorAREGAY, Mehreteab-
item.contributorLAWSON, Andrew-
item.contributorFAES, Christel-
item.contributorKirby, Russell S.-
item.contributorCarroll, Rachel-
item.contributorWATJOU, Kevin-
item.fullcitationAREGAY, Mehreteab; LAWSON, Andrew; FAES, Christel; Kirby, Russell S.; Carroll, Rachel & WATJOU, Kevin (2018) Zero-inflated multiscale models for aggregated small area health data. In: ENVIRONMETRICS, 29(1) (Art N° e2477).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1180-4009-
crisitem.journal.eissn1099-095X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
aregay 1.pdf
  Restricted Access
Published version1.01 MBAdobe PDFView/Open    Request a copy
MS_ZIM_v2.pdfPeer-reviewed author version1.21 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.