Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/26582
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramires, Thiago G. | - |
dc.contributor.author | HENS, Niel | - |
dc.contributor.author | Cordeiro, Gauss M. | - |
dc.contributor.author | Ortega, Edwin M. M. | - |
dc.date.accessioned | 2018-08-03T13:18:59Z | - |
dc.date.available | 2018-08-03T13:18:59Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | COMPUTATIONAL STATISTICS, 33(2), p. 709-730 | - |
dc.identifier.issn | 0943-4062 | - |
dc.identifier.uri | http://hdl.handle.net/1942/26582 | - |
dc.description.abstract | Nonlinear effects between explanatory and response variables are increasingly present in new surveys. In this paper, we propose a flexible four-parameter semi-parametric cure rate survival model called the sinh Cauchy cure rate distribution. The proposed model is based on the generalized additive models for location, scale and shape, for which any or all parameters of the distribution are parametric linear and/or nonparametric smooth functions of explanatory variables. The new model is used to fit the nonlinear behavior between explanatory variables and cure rate. The biases of the cure rate parameter estimates caused by not incorporating such non-linear effects in the model are investigated using Monte Carlo simulations. We discuss diagnostic measures and methods to select additive terms and their computational implementation. The flexibility of the proposed model is illustrated by predicting lifetime and cure rate proportion as well as identifying factors associated to women diagnosed with breast cancer. | - |
dc.description.sponsorship | The first author acknowledge the financial support of the "Ciencia sem Fronteiras" program of CNPq (Brazil) under the process number 200574/2015-9. | - |
dc.language.iso | en | - |
dc.rights | © Springer-Verlag GmbH Germany, part of Springer Nature 2017 | - |
dc.subject.other | cure rate models; GAMLSS; long-term survivors; P-spline; residual analysis | - |
dc.title | Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 730 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 709 | - |
dc.identifier.volume | 33 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Ramires, TG (reprint author), Univ Tecnol Fed Parana, Dept Math, Apucarana, Brazil, thiagogentil@gmail.com | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1007/s00180-017-0781-8 | - |
dc.identifier.isi | 000428989800007 | - |
item.fulltext | With Fulltext | - |
item.contributor | Ramires, Thiago G. | - |
item.contributor | HENS, Niel | - |
item.contributor | Cordeiro, Gauss M. | - |
item.contributor | Ortega, Edwin M. M. | - |
item.fullcitation | Ramires, Thiago G.; HENS, Niel; Cordeiro, Gauss M. & Ortega, Edwin M. M. (2018) Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model. In: COMPUTATIONAL STATISTICS, 33(2), p. 709-730. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2019 | - |
crisitem.journal.issn | 0943-4062 | - |
crisitem.journal.eissn | 1613-9658 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ramires 1.pdf Restricted Access | Published version | 918.24 kB | Adobe PDF | View/Open Request a copy |
LSCcr_Semi_21_09_2017.pdf | Peer-reviewed author version | 948.51 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.