Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26724
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVREYS, Kim-
dc.contributor.authorLIZIN, Sebastien-
dc.contributor.authorVAN DAEL, Miet-
dc.contributor.authorTharakan, Joe-
dc.contributor.authorMALINA, Robert-
dc.date.accessioned2018-09-03T07:24:40Z-
dc.date.available2018-09-03T07:24:40Z-
dc.date.issued2018-
dc.identifier.citationInternational Conference on Resource Sustainability (icRS 2018), Beijing, China, 27-29/06/2018-
dc.identifier.urihttp://hdl.handle.net/1942/26724-
dc.description.abstractIn this article we identified the factors which according to international experts will have substantial ef-fects on the general future developments and commercialization of carbon capture and utilization (CCU) technologies. A two round online Delphi study with 15 international experts in the field of CCU enabled us to explore the main items within five impact categories, being: (1) benefits, (2) risks, (3) future devel-opments, (4) demand and (5) supply constraints. Based on the results of the Delphi study we subsequently constructed four future scenarios which represent how the CCU sector could look like in 10 years using a local scenario development workshop with 9 experts from within Flanders (Belgium) and the Netherlands. We used a deductive, explorative scenario development method, which resulted in a 2x2 scenario matrix. The results of the Delphi study, all four scenarios and their implications for existing and future industry and governmental organizations are presented. Our insights are valuable and timely for facilitating the pro-cess of scenario planning for CCU development activities. Finally, although we worked with a regionally specific case study, the same method could be implemented in other regions, using the general findings from our Delphi study as a starting point for the scenario development.-
dc.description.sponsorshipBOF, INTERRGEG, and FWO-
dc.language.isoen-
dc.subject.otherforecasting; Delphi; scenario development; carbon capture and utilization-
dc.titleExploring the future of CCU by combining an international Delphi study with local scenario development-
dc.typeConference Material-
local.bibliographicCitation.conferencedate27-29/06/2018-
local.bibliographicCitation.conferencenameInternational Conference on Resource Sustainability (icRS 2018)-
local.bibliographicCitation.conferenceplaceBeijing, China-
local.bibliographicCitation.jcatC2-
dc.relation.references1. Styring, P., E.A. Quadrelli, and K. Armstrong, Carbon dioxide utilisation: closing the carbon cycle. 2014: Elsevier. 2. Hunt, A.J., et al., Generation, Capture, and Utilization of Industrial Carbon Dioxide. ChemSusChem, 2010. 3(3): p. 306-322. 3. Aresta, M., A. Dibenedetto, and A. Angelini, The changing paradigm in CO2 utilization. Journal of CO2 Utilization, 2013. 3–4: p. 65-73. 4. Al-Mamoori, A., et al., Carbon capture and utilization update. Energy Technology, 2017. 5. Markewitz, P., et al., Worldwide innovations in the development of carbon capture technologies and the utilization of CO 2. Energy & environmental science, 2012. 5(6): p. 7281-7305. 6. Bruhn, T., H. Naims, and B. Olfe-Kräutlein, Separating the debate on CO2 utilisation from carbon capture and storage. Environmental Science & Policy, 2016. 60: p. 38-43. 7. Najera, M., et al., Carbon capture and utilization via chemical looping dry reforming. Chemical Engineering Research and Design, 2011. 89(9): p. 1533-1543. 8. Khoo, H.H., et al., Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia, 2011. 4: p. 2494-2501. 9. Yu, K.M.K., et al., Recent Advances in CO2 Capture and Utilization. ChemSusChem, 2008. 1(11): p. 893-899. 10. Sayre, R., Microalgae: The Potential for Carbon Capture. BioScience, 2010. 60(9): p. 722-727. 11. Riduan, S.N. and Y. Zhang, Recent developments in carbon dioxide utilization under mild conditions. Dalton Transactions, 2010. 39(14): p. 3347-3357. 12. Kang, D., et al., Carbon capture and utilization using industrial wastewater under ambient conditions. Chemical Engineering Journal, 2017. 308: p. 1073-1080. 13. Blanken, W., et al., Optimizing carbon dioxide utilization for microalgae biofilm cultivation. Biotechnology and Bioengineering, 2017. 114(4): p. 769-776. 14. Mac Dowell, N., et al., The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 2017. 7(4): p. 243-249. 15. Margolis, R. and J. Zuboy, Nontechnical barriers to solar energy use: review of recent literature. 2006, National Renewable Energy Laboratory (NREL), Golden, CO. 16. Yaqoot, M., P. Diwan, and T.C. Kandpal, Review of barriers to the dissemination of decentralized renewable energy systems. Renewable and Sustainable Energy Reviews, 2016. 58: p. 477-490. 17. Karatayev, M., et al., Renewable energy technology uptake in Kazakhstan: Policy drivers and barriers in a transitional economy. Renewable and Sustainable Energy Reviews, 2016. 66: p. 120-136. 18. Kosow, H. and R. Gaßner, Methods of future and scenario analysis: overview, assessment, and selection criteria. 2008. 19. Kunc, M. and F.A. O'Brien, Exploring the development of a methodology for scenario use: Combining scenario and resource mapping approaches. Technological Forecasting and Social Change, 2017. 124(Supplement C): p. 150-159. 20. Okoli, C. and S.D. Pawlowski, The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 2004. 42(1): p. 15-29. 21. Linstone, H.A. and M. Turoff, The Delphi method: Techniques and applications. Vol. 29. 1975: Addison-Wesley Reading, MA. 22. Gupta, U.G. and R.E. Clarke, Theory and applications of the Delphi technique: A bibliography (1975–1994). Technological forecasting and social change, 1996. 53(2): p. 185-211. 23. Yousuf, M.I., Using experts’ opinions through Delphi technique. Practical assessment, research & evaluation, 2007. 12(4): p. 1-8. 24. Schmidt, R.C., Managing Delphi surveys using nonparametric statistical techniques. decision Sciences, 1997. 28(3): p. 763-774. 25. Schmidt, R., K. Lyytinen, and P.C. Mark Keil, Identifying software project risks: An international Delphi study. Journal of management information systems, 2001. 17(4): p. 5-36. 26. Schoemaker, P.J., Scenario planning: a tool for strategic thinking. Sloan management review, 1995. 36(2): p. 25. 27. Wulf, T., P. Meissner, and S. Stubner, A scenario-based approach to strategic planning–integrating planning and process perspective of strategy. Leipzig Graduate School of Management, 2010. 28. Patricio, J., et al., Region prioritization for the development of carbon capture and utilization technologies. Journal of CO2 Utilization, 2017. 17: p. 50-59. 29. Keith, D.W., Why capture CO2 from the atmosphere? Science, 2009. 325(5948): p. 1654-1655. 30. Wilson, G., et al., A VISION for Smart CO2 Transformation in Europe (SCOT). Using CO2 As a Resource. 2016, Seventh Framework Programme and European Union. 31. Initiative, T.G.C., A Roadmap for the Global Implementation of Carbon Utilization Technologies: Transforming CO2 from a liability to an asset at significant market scale. 2016. 32. Cuéllar-Franca, R.M. and A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 2015. 9: p. 82-102. 33. Armstrong, K. and P. Styring, Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction. Frontiers in Energy Research, 2015. 3(8). 34. Aresta, M., Carbon dioxide recovery and utilization. 2013: Springer Science & Business Media. 35. Quadrelli, E.A., et al., Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential. ChemSusChem, 2011. 4(9): p. 1194-1215. 36. Jones, C.R., et al., What a waste! Assessing public perceptions of Carbon Dioxide Utilisation technology. Journal of CO2 Utilization, 2014. 7: p. 51-54. 37. Rahman, F.A., et al., Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renewable and Sustainable Energy Reviews, 2017. 71: p. 112-126. 38. Styring, P. and D. Jansen, Carbon Capture and Utilisation in the green economy: Using CO2 to manufacture fuel, chemicals and materials. 2011, Centre for Low Carbon Futures. 39. von der Assen, N., J. Jung, and A. Bardow, Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy & Environmental Science, 2013. 6(9): p. 2721-2734. 40. von der Assen, N. and A. Bardow, Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chemistry, 2014. 16(6): p. 3272-3280. 41. Müller, K., L. Mokrushina, and W. Arlt, Thermodynamic Constraints for the Utilization of CO2. Chemie Ingenieur Technik, 2014. 86(4): p. 497-503. 42. Arakawa, H., et al., Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews, 2001. 101(4): p. 953-996. 43. Beckman, E.J., Supercritical and near-critical CO 2 in green chemical synthesis and processing. The Journal of Supercritical Fluids, 2004. 28(2): p. 121-191. 44. Fraga, E.S. and M. Ng, A framework for the analysis of the security of supply of utilising carbon dioxide as a chemical feedstock. Faraday discussions, 2015. 183: p. 309-326. 45. Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006. 115(1–4): p. 2-32. 46. Lainez-Aguirre, J.M., M. Pérez-Fortes, and L. Puigjaner, Economic evaluation of bio-based supply chains with CO2 capture and utilisation. Computers & Chemical Engineering. 47. Zhang, X., J.-L. Fan, and Y.-M. Wei, Technology roadmap study on carbon capture, utilization and storage in China. Energy Policy, 2013. 59: p. 536-550. 48. Dimitriou, I., et al., Carbon dioxide utilisation for production of transport fuels: process and economic analysis. Energy & Environmental Science, 2015. 8(6): p. 1775-1789. 49. Li, L., et al., A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 2013. 108: p. 112-130. 50. Mikkelsen, M., M. Jørgensen, and F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010. 3(1): p. 43-81. 51. Abanades, J.C., et al., On the climate change mitigation potential of CO2 conversion to fuels. Energy & Environmental Science, 2017. 10(12): p. 2491-2499. 52. Society, R. and R.S. Staff, The Potential and Limitations of Using Carbon Dioxide. 2017: Royal Society. 53. Artz, J., et al., Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical reviews, 2017. 54. von der Gracht, H.A. and I.-L. Darkow, Scenarios for the logistics services industry: A Delphi-based analysis for 2025. International Journal of Production Economics, 2010. 127(1): p. 46-59. 55. Nygrén, N.A., P. Tapio, and Y. Qi, Lake management in 2030—Five future images based on an international Delphi study. Futures, 2017. 93: p. 1-13. 56. Nowack, M., J. Endrikat, and E. Guenther, Review of Delphi-based scenario studies: quality and design considerations. Technological Forecasting and Social Change, 2011. 78(9): p. 1603-1615. 57. Dalkey, N. and O. Helmer, An experimental application of the Delphi method to the use of experts. Management science, 1963. 9(3): p. 458-467. 58. Brancheau, J.C., B.D. Janz, and J.C. Wetherbe, Key issues in information systems management: 1994-95 SIM Delphi results. MIS quarterly, 1996: p. 225-242. 59. Dekleva, S. and J. Zupančič, Key issues in information systems management: a Delphi study in Slovenia. Information & Management, 1996. 31(1): p. 1-11. 60. Kobus, J. and M. Westner. RANKING-TYPE DELPHI STUDIES IN IS RESEARCH: STEP-BY-STEP GUIDE AND ANALYTICAL EXTENSION. in 9th IADIS INTERNATIONAL CONFERENCE. 61. Pare, G., et al., A systematic assessment of rigor in information systems ranking-type Delphi studies. Information & management, 2013. 50(5): p. 207-217. 62. Rowe, G. and G. Wright, The Delphi technique as a forecasting tool: issues and analysis. International journal of forecasting, 1999. 15(4): p. 353-375. 63. Hasson, F. and S. Keeney, Enhancing rigour in the Delphi technique research. Technological Forecasting and Social Change, 2011. 78(9): p. 1695-1704. 64. Mullen, P.M., Delphi: myths and reality. Journal of health organization and management, 2003. 17(1): p. 37-52. 65. Hall, J.K. and M.J. Martin, Disruptive technologies, stakeholders and the innovation value‐added chain: a framework for evaluating radical technology development. R&D Management, 2005. 35(3): p. 273-284. 66. Goodman, L.A., Snowball sampling. The annals of mathematical statistics, 1961: p. 148-170. 67. Gilbart, E. and N. Kreiger, Improvement in cumulative response rates following implementation of a financial incentive. American journal of epidemiology, 1998. 148(1): p. 97-99. 68. Keil, M., A. Tiwana, and A. Bush, Reconciling user and project manager perceptions of IT project risk: a Delphi study1. Information Systems Journal, 2002. 12(2): p. 103-119. 69. Powell, C., The Delphi technique: myths and realities. Journal of advanced nursing, 2003. 41(4): p. 376-382. 70. Corbin, J. and A. Strauss, Grounded theory research: Procedures, canons and evaluative criteria. Zeitschrift für Soziologie, 1990. 19(6): p. 418-427. 71. Alwin, D.F. and J.A. Krosnick, The measurement of values in surveys: A comparison of ratings and rankings. Public Opinion Quarterly, 1985. 49(4): p. 535-552. 72. Kendall, M.G. and B.B. Smith, The Problem of m Rankings. 1939: p. 275-287. 73. von der Gracht, H.A., Consensus measurement in Delphi studies: Review and implications for future quality assurance. Technological Forecasting and Social Change, 2012. 79(8): p. 1525-1536. 74. UNEP, Global Environment Outlook 3. 2002. p. 320. 75. Bishop, P., A. Hines, and T. Collins, The current state of scenario development: an overview of techniques. foresight, 2007. 9(1): p. 5-25. 76. Mahmoud, M., et al., A formal framework for scenario development in support of environmental decision-making. Environmental Modelling & Software, 2009. 24(7): p. 798-808. 77. Van der Heijden, K., Scenarios: the art of strategic conversation. 2011: John Wiley & Sons. 78. Amer, M., T.U. Daim, and A. Jetter, A review of scenario planning. Futures, 2013. 46: p. 23-40. 79. Börjeson, L., et al., Scenario types and techniques: Towards a user's guide. Futures, 2006. 38(7): p. 723-739. 80. Van Notten, P.W., et al., An updated scenario typology. Futures, 2003. 35(5): p. 423-443. 81. Siebelink, R., J.I. Halman, and E. Hofman, Scenario-Driven Roadmapping to cope with uncertainty: Its application in the construction industry. Technological forecasting and social change, 2016. 110: p. 226-238. 82. van 't Klooster, S.A. and M.B.A. van Asselt, Practising the scenario-axes technique. Futures, 2006. 38(1): p. 15-30. 83. Publications, N., Picture This - A Guide to Scenario Planning for Voluntary: Organisations. 2006: NCVO Publications. 84. Mac Dowell, N., et al., The role of CO2 capture and utilization in mitigating climate change. Nature Clim. Change, 2017. 7(4): p. 243-249. 85. van Heek, J., K. Arning, and M. Ziefle, Reduce, reuse, recycle: Acceptance of CO2-utilization for plastic products. Energy Policy, 2017. 105: p. 53-66. 86. Schrag, D.P., Storage of carbon dioxide in offshore sediments. Science, 2009. 325(5948): p. 1658-1659. 87. Goeppert, A., et al., Recycling of carbon dioxide to methanol and derived products–closing the loop. Chemical Society Reviews, 2014. 43(23): p. 7995-8048. 88. Thomassen, G., et al., A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework. Renewable and Sustainable Energy Reviews, 2017. 68: p. 876-887. 89. Carlsson Reich, M., Economic assessment of municipal waste management systems—case studies using a combination of life cycle assessment (LCA) and life cycle costing (LCC). Journal of Cleaner Production, 2005. 13(3): p. 253-263. 90. Negro, S.O., R.A.A. Suurs, and M.P. Hekkert, The bumpy road of biomass gasification in the Netherlands: Explaining the rise and fall of an emerging innovation system. Technological Forecasting and Social Change, 2008. 75(1): p. 57-77. 91. O'Brien, F.A. and M. Meadows, Scenario orientation and use to support strategy development. Technological Forecasting and Social Change, 2013. 80(4): p. 643-656.-
local.type.refereedRefereed-
local.type.specifiedPresentation-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationVREYS, Kim; LIZIN, Sebastien; VAN DAEL, Miet; Tharakan, Joe & MALINA, Robert (2018) Exploring the future of CCU by combining an international Delphi study with local scenario development. In: International Conference on Resource Sustainability (icRS 2018), Beijing, China, 27-29/06/2018.-
item.contributorVREYS, Kim-
item.contributorLIZIN, Sebastien-
item.contributorVAN DAEL, Miet-
item.contributorTharakan, Joe-
item.contributorMALINA, Robert-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Vreys ICRS 2018 presentation.pptxConference material13.41 MBMicrosoft PowerpointView/Open
Show simple item record

Page view(s)

1,128
checked on Sep 5, 2022

Download(s)

14
checked on Sep 5, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.