Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26727
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDEGEE, Herve-
dc.contributor.advisorVandewalle, Lucie-
dc.contributor.advisorVan Gysel, Ann-
dc.contributor.authorSTEENSELS, Rik-
dc.date.accessioned2018-09-03T12:08:48Z-
dc.date.available2018-09-03T12:08:48Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/1942/26727-
dc.description.abstractOptimisation of building elements towards more efficient and sustainable use of materials is an ever present drive for innovation within an industry. In order to achieve an optimised design for a building element, a detailed knowledge of the construction materials, structural behaviour, manufacturing process and design process are important. This thesis focusses on the design of end zone detailing of pre-tensioned elements. Even though pre-tensioned elements are already well established as a construction element for their great weight-to-span ratio and optimised use of the applied materials, some issues sometimes still occur concerning end zone cracking. This is mainly due to the intricate nature of the stress distribution in the anchorage zone and the many parameters influencing this behaviour. In order to provide current structural designers with the appropriate knowledge towards efficient end zone detailing, an overview of the currently available literature concerning the end zone stresses and anchorage zone reinforcement detailing is provided. This overview illustrates the difficulties concerning the design of end zone reinforcement. The main parameters influencing the anchorage zone stress distribution are identified. The most common design models (both theoretical and numerical) and the associated guidelines towards end zone reinforcement detailing are also discussed. Even though some of these models are based on similar theoretical principles, a consistent method towards proper end zone detailing is not provided in the current literature. To improve on the understanding of the intricate stress behaviour in the end zones of pre-tensioned elements, a two-stage modelling approach is presented. This numerical model allows for the full assessment of the anchorage zone stress distribution and post-cracking behaviour based on input parameters known at the design stage. In the first stage of the modelling approach, the bond behaviour and transfer length are assessed in order to properly simulate the transfer of the prestress load from the prestress strand to the concrete element. Next, this behaviour is used as an input to assess the stress distribution within the anchorage zone of the analysed element. The established numerical model provides the opportunity to further investigate the stress behaviour within the anchorage zone. A parametric study is performed in which the impact of important influencing parameters is discussed. A detailed analysis of the current end zone detailing provisions is also performed. Through the evaluation of the strain behaviour associated with these end zone detailing provisions and an additional parametric analysis of the anchorage zone reinforcement, good practice guidelines of the anchorage zone detailing towards efficient end zone crack control are developed. Lastly, a basic strut-and-tie model is created as a design tool to compute the total required end zone reinforcement. This strut-and-tie model is based on the internal force flow of the anchorage zone computed through the two-stage numerical model and takes into account several geometrical, material, and mechanical properties. It can be used as a simplified model to assess the necessary end zone reinforcement. The efficiency of the strut-and-tie model is illustrated through the analyses of ten design examples ranging from prestressed beam elements to hollow core slabs. The conservativeness of the strut-and-tie model is also analysed. Even though further refinement and optimisation is necessary, it is shown that the model can provide a possible groundwork towards a more complete design tool for efficient anchorage zone reinforcement detailing and proper end zone crack control.-
dc.description.sponsorshipBOF-
dc.language.isoen-
dc.subject.otherprestress concrete; pre-tensioned concrete; end zone detailing; anchorage zone; 2-stage analysis-
dc.titleEnd zone design and detailing of pre-tensioned concrete elements-
dc.typeTheses and Dissertations-
local.format.pages206-
local.bibliographicCitation.jcatT1-
dc.relation.referencesBibliography [1] M. R. O'Callaghan, Tensile stresses in the end regions of pretensioned ibeams at release, Thesis, University of Texas, Texas (2007). [2] Fédération internationale du béton, Comité euro-international du béton, Fédération internationale de la précontrainte, Model code 2010: first complete draft., Fédération internationale du béton, Lausanne, Switzerland, 2010. [3] AASHTO, Standard specifications for highway bridges, Tech. rep., American Association of State Highway and Transportation Officials inc (1996). [4] D. Mitchell, W. Cook, A. Khan, T. Tham, Influence of high strength concrete on transfer and development length of pretensioning strand, PCI Journal 38 (1993) 52-66. [5] B. Oh, E. Kim, Y. Choi, Theoretical analysis of transfer lenghts in pretensioned prestressed concrete members, Journal of Engineering Mechanics 132 (2006) 1057-1066. [6] P. Okumus, M. Oliva, Strand debonding for pretensioned bridge girders to control end cracks, Structural Journal 111 (1) (2014) 201-210. doi:10.14359/51686518. [7] B. Hendrikx, Spalling in EN1168 (Oct. 2011). [8] L. Wang, L. Dai, X. Zhang, J. Zhang, Concrete cracking prediction including the filling proportion of strand corrosion products, Materials 10 (1). [9] G. De Nayer, Beton II: Spanbeton, verankeringszones, Geprefabriceerd en voorgespannen beton, XIOS Hogeschool Limburg, Hasselt, 2012, ism Alpreco en FEBE. [10] American Concrete Institute, ACI concrete terminology (2013). [11] European Committee for Standardization, Eurocode 2: Design of concrete structures - part 1-1: General rules and rules for buildings (+ ac:2008) (2005). [12] G. Magnel, Le béton précontraint, Fecheyr, Gent, 1948. [13] Y. Guyon, Béton précontraint : étude théorique et expérimentale, Evrolles, Paris, 1948. [14] L. Leonhardt, Prestressed concrete: design and construction, Wilhelm Ernst & Sohn, Munchen, 1964.[15] D. Rogowski, P. Marti, Vsl report series 3: Detailing for post-tensioned, Tech. rep., VSL International Ltd., Bern, Switzerland (1991). [16] E. Hoyer, E. Friedrich, Beitrag zur frage der haftspannung in eisenbetonbauteilen (contribution to the question of bond stress in reinforced concrete elements), Beton und Eisen 38 (6) (1939) 107-110. [17] J. Marti-Vargas, P. Serna, W. Hale, Strand bond performance in prestressed concrete accounting for bond slip, Engineering Structures 51 (2013) 236-244. [18] Fédération international du Béton, Bullettin 10 bond of reinforcement, Tech. rep., International federation for structural concrete, (2000). [19] K. Lundgren, J. Magnusson, Three-dimensional modeling of anchorage zones in reinforced concrete, Journal of engineering mechanics 127 (7) (2001) 693–699. [20] J. M. Benitez, J. C. Galvez, M. Casati, Study of bond stress-slip relationship and radial dilation in prestressed concrete, International Journal for Numerical and Analytical Methods in Geomechanicsdoi:10.1002/nag.2158. [21] R. Gustavson, Experimental studies of the bond response of three-wire strands and some influencing parameters, Materials and Structures 37 (2). [22] J. A. Den Uijl, A. J. Bigaj, A bond model based on ribbed bars on concrete confinement, Tech. rep., Delft University of technology, Delf (1996). [23] J. C. Galvez, J. M. Benitez, M. J. Casati, B. S. Tork, D. A. Cendon, Cohesivefrictional model for bond and splitting action of prestressing wire, International Journal for Numerical and Analytical Methods in Geomechanics 35 (11) (2011) 1257-1277. doi:10.1002/nag.956. [24] M. Stocker, M. Sozen, Investigation of prestressed reinforced concrete hof highway bridges. part vi: Bond characteristics of prestressing strand., Tech. rep., University of Illinois (1969). [25] B. Russell, N. Burns, Design guidelines for transfer, development and debonding of large diameter seven wire strands in pretensioned concrete girders, Tech. rep., State Department of Highways and Public Transportation (1993). [26] J. A. Den Uijl, Tensile stresses in the transmission zones of hollow-core slabs, Tech. Rep. 5-83-10, Delft University of technology, Stevin Laboratories (1983). [27] V. Briere, K. Harries, J. Kasan, C. Hager, Dilation behavior of seven-wire prestressing strand – the hoyer effect, Construction and Building Materials 40 (2013) 650-658. [28] H. H. Abrishami, D. Mitchell, Analysis of bond stress distributions in pullout specimens, Journal of Structural Engineering 122 (3) (1996) 255-261. [29] C. N. Dang, C. D. Murray, W. M. Hale, A review of factors influencing strand bond, Proceedings of the PCI convention and national bridge conference.[30] C. N. Dang, R. W. Floyd, C. D. Murray, M. W. Hale, J. R. Martí-Vargas, Bond stress-slip model for 0.6 in. (15.2 mm) diameter strand, ACI Sturctural Journal 112 (5) (2015) 625 - 634. [31] A. Ramirez-Garcia, R. Floyd, W. Micah Hale, J. Marti-Vargas, effect of concrete compressive strength on transfer length, Structures 5 (2016) 131-140. [32] C. Naito, F. Cetisli, T. Tate, A method for quality assurance of seven-wire strand bond in portland cement concrete, PCI Journal 60 (4) (2015) 69-84. [33] J. Marti-Vargas, P. Serna, J. Navarro-Gregori, J. Bonet, Effects of concrete compusition on transmission length of prestressing strands, Construction and Building Materials 27 (2012) 350-356. [34] J. Marti-Vargas, P. Serna, J. Navarro-Gregori, L. Pallarés, Bond of 13 mm prestressing steel strands in pretensioned concrete members, Engineering structures 41 (2012) 403-412. [35] C. Vázquez-Herrero, I. Martínez-Lage, G. Aguilar, F. Martínez-Abella, Evaluation of strand bond properties along the transfer length of prestressed lightweight concrete members, Engineering Structures 49 (2013) 1048-1058. doi:10.1016/j.engstruct.2012.11.027. [36] C. Vazquez-Herrero, I. Matrinez-Lage, F. Martinez-Abella, Transfer length in pretensioned prestressed concrete structures composed of high performance lightweight and normal-weight concrete, Engineering Structures 56 (2013) 983-992. [37] P. Desnerck, G. De Schutter, L. Taerwe, Bond behaviour of reinforcing bars in self-compacting concrete: experimental determination by using beam tests, Materials and Structures 43 (1) (2010) 53-62. doi:10.1617/s11527-010-9596-6. URL http://dx.doi.org/10.1617/s11527-010-9596-6 [38] P. Desnerck, G. De Schutter, L. Taerwe, A local bond stress-slip model for reinforcing bars in self-compacting concrete, Proceedings of fracture mechanics of concrete and concrete structures (2010) 771-778. [39] M. Valcuende, C. Parra, Bond behaviour of reinforcement in self-compacting concretes, Construction and Building Materials 23 (1) (2009) 162-170. doi:10.1016/j.conbuildmat.2008.01.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0950061808000160 [40] A. Castel, T. Vidal, R. François, Bond and cracking properties of selfconsolidating concrete, Construction and Building Materials 24 (7) (2010) 1222-1231. doi:10.1016/j.conbuildmat.2009.12.017. URL http://linkinghub.elsevier.com/retrieve/pii/S0950061809004280 [41] Y. Kim, D. Trejo, B. Hueste, Bond performance in self-consolidating concrete pretensioned bridge girders, ACI structural journal 109 (6) (2012) 755-765. [42] M. Lachemi, S. Bae, K. M. A. Hossain, M. Sahmaran, Steel–concrete bond strength of lightweight self-consolidating concrete, Materials and Structures 42 (7) (2008) 1015-1023. doi:10.1617/s11527-008-9440-4. URL http://www.springerlink.com/index/10.1617/s11527-008-9440-4[43] D. Moon, Z. Goanseup, K. Jang-Ho, L. Seung-Jung, K. Gyuseon, On strain change of prestressing strand during detensioning procedures, Engineering Structures 32 (2010) 2570-2578. [44] J. C. Galvez, J. M. Benitez, B. Tork, M. Casati, D. Cendón, Splitting failure of precast prestressed concrete during the release of the prestressing force, Engineering Failure Analysis 16 (2009) 2618-2634. [45] R. N. do Carmo, S. M. Lopes, Influence of cover on bond of strands prestressed by pretensioning, Canadian Journal of Civil Engineering 28 (6) (2001) 938-948. doi:10.1139/cjce-28-6-938. [46] A. Torre-Casanova, L. Jason, L. Davenne, X. Pinelli, Confinement effects on the steel-concrete bond strength and pull-out failure, Engineering Fracture Mechanics 97 (2013) 92-104. doi:10.1016/j.engfracmech.2012.10.013. [47] T. Cousins, J. Stallings, S. M.B., effect of strand spacing on development of prestressing strand, Tech. rep., Highway research center, Auburn university (1993). [48] S. Gross, N. Burns, Transfer and development length of 15.2 mm (0.6 inch) diameter prestressing strand in high performance concrete: results of the hoblizell-buckner beam tests, Tech. rep., Center for transportations research (1995). [49] B. Oh, E. Kim, Realistic evaluation of transfer lengths in pretensioned prestressed concrete members, ACI Structural Journal 97 (2000) 821-830. [50] C. Dang, F. R.W., W. Hale, J. Marti-Vargas, Spacing requirements of 0.7 in. (18mm) diameter prestressing strands, PCI Journal 61 (1) (2016) 70-87. [51] J. Den Uijl, Bond modelling of prestressing strand, ACI Special Publication; A tribute to Peter Gergely 180 (1998) 145-169. [52] J. Fellinger, Shear and Anchorage Behaviour of Fire Exposed Hollow Core Slabs, DUP Science, 2004. [53] B. Oh, E. Kim, C. Y.C., Bond modelling of prestressing strand, Journal of Engineering Mechanics 132 (2006) 1057-1066. [54] J. M. Benitez, J. C. Galvez, Bond modelling of prestressed concrete during the prestressing force release, Materials and Structures 44 (1) (2010) 263-278. doi:10.1617/s11527-010-9625-5. [55] K. Lundgren, Three-dimensional modelling of bond in reinforced concrete: theoretical model, experiments and applications, Chalmers tekniska högsk., Göteborg, 1999. [56] L. Jendele, J. Cervenka, Finite element modelling of reinforcement with bond, Computers & Structures 84 (28) (2006) 1780-1791. doi:10.1016/j.compstruc.2006.04.010. URL http://linkinghub.elsevier.com/retrieve/pii/S0045794906001945 [57] A. Ayoub, F. C. Filippou, Finite-element model for pretensioned prestressed concrete girders, Journal of structural engineering 136 (4) (2009) 401–409.[58] H. Tabatabai, T. Dickson, the history of the prestressing strand development length equation, PCI Journal 38 (1993) 64-75. [59] S. Timoshenko, Strength of Materials part 2, Lancaster Press, 1941. [60] A. Abdelatif, J. Owen, M. Hussein, Modelling the prestress transfer in pretensioned concrete elements, Finite Elements in Analysis and Design 94 (2015) 47-63. [61] A. A. Arab, S. S. Badie, M. T. Manzari, A methodological approach for finite element modeling of pretensioned concrete members at the release of pretensioning, Engineering Structures 33 (6) (2011) 1918-1929. doi:10.1016/j.engstruct.2011.02.028. [62] A. A. Arab, Finite element modeling of pretensioned concrete girders: A methodological approach with applications in large strands and end zone cracking, Ph.D. thesis, George Washington University (2012). [63] H. Cecat, Studie van de krachtsoverdracht in de verankeringszone van geprefabriceerde holle vloerplaten (1992). [64] C. N. Dang, R. W. Floyd, M. W. Hale, J. R. Martí-Vargas, Measured transfer lengths of 0.7 in. (17.8 mm) strands for pretensioned beams, ACI Sturctural Journal 113 (1) (2016) 85 - 94. [65] Committee 318, American Concrete Institute, Building code requirements for structural concrete (2014). [66] L. Martin, N. Scott, Development of prestressing strand in pretensioned members, ACI Journal 73 (8) (1976) 453–456. [67] P. Zia, T. Mostafa, Development length of prestressing strans, PCI Journal 22 (5) (1977) 54–65. [68] T. Cousins, D. Johnston, P. Zia, Transfer and development length of epoxy coated and uncoated prestressing strand, PCI Journal 35 (4) (1990) 92–103. [69] T. Cousins, M. Badeaux, S. Moustafa, Formulation of new development length equation for 0.6 in. prestressing strand, PCI Journal 37 (1) (1992) 66-73. [70] M. Shahawy, M. Issa, B. Batchelor, Strand transfer lengths in full scale aashto prestressed concrete girders, PCI Journal 37 (3) (1992) 84-96. [71] J. Deatherage, E. Burdette, Development length and lateral spacing requirements of prestressing strand for prestressed concrete bridge girders, PCI Journal 39 (1) (1994) 70-83. [72] C. Buckner, A review of strand development length for pretensioned concrete members, PCI Journal 40 (2) (1995) 84-105. [73] T. M.K., M. Baishya, Discussion of a review of strand development length for pretensioned concrete members, PCI Journal 41 (2) (1996) 112-127. [74] S. Lane, A new development length equation for pretensioned strands in bridge beams and piles, Tech. rep., Turner-Fairbank Highway Research Center (1998).[75] Z. Mahmoud, S. Rizkalla, Z. E.R., Transfer and development lengths of carbon fiber reinforcement polymers prestressing reinforcing, ACI Structural Journal 96 (4) (1999) 594-602. [76] M. Kose, W. Burkett, Formulation of new development length equation for 0.6 in. prestressing strand, PCI Journal 50 (5) (2005) 96-105. [77] J. Ramirez, R. B.W., Transfer, development and splice length for strand/reinforcement in high-strenght concrete, Tech. rep., Transportation Research Board, Nathional Research Council (NCHRP-603) (2008). [78] E. Mörsch, Über die berechnung der gelenkquader, Beton und Eisen 12 (1924) 156-161. [79] O. L. Burdet, Analysis and design of anchorage zones in post-tensioned concrete bridges, Thesis, University of Texas, Texas (1990). [80] W. Marshall, A. Mattock, Control of horizontal cracking in the ends of pretensioned prestressed concrete girders, PCI Journal 7 (1962) 56-74. [81] L. Martin, C. J.P., PCI design handbook (6th edition), Precast/Prestressed Concrete Institute, 2004. [82] D. Pope, J. Robers, D. Densmore, AASHTO LRFD bridge construction specifications, American Association of State Highway and Transportation Officials (AASHTP), 2002. [83] P. Gergely, M. Sozen, Design of anchorage-zone reinforcement in prestressed concrete beams, PCI Journal 12 (2) (1967) 63-75. [84] E. Küpfer, Bemessung von spannbetonbauteilen: einschließlich teilweiser vorspannung, Beton-Kalender (1989) 573. [85] R. Davis, D. Buckner, C. Ozyildirim, Serviceability-based design method for vertical beam end reinforcement, Proceedings, PCI National Bridge Conference. [86] E. Crispino, T. Cousins, C. Roberts-Wollmann, Anchorage zone design for pretensioned precast bulb-t bridge girders in virginia, Tech. rep., Virginia Transportation Research Council (2009). [87] Fédération internationale du béton, Comité euro-international du béton, Fédération internationale de la précontrainte, Model code 1990, Comité Euro-International de Béton, Lausanne, Switzerland, 1998. [88] European Committee for Standardization, EN 1168 2005 a3 (2011). [89] A. Akhnoukh, Prestressed concrete girder bridges using large 0.7 inch strands, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering 7 (9) (2013) 613-617. [90] J. A. Den Uijl, Tensile stresses in the transmission zones of hollow-core slabs prestressed with pretensioned strands, Tech. rep., Stevin laboratory, Delft University of technology, Delf (1983).[91] Y. Koyuncu, R. Birgul, T. Ahlborn, H. Aktan, Identifying causes for distress patterns in pretensioned concrete (pc), TRB 2003 Annual Meeting (2003) 21. [92] F. Gens, J. Dotreppe, A new formula for the calculation of transverse tensile stresses in end zones of pretensioned beams, Betonwerk + Fertigteil- Technik (BFT) (Concrete Plant + Precast Technology) 71 (2005) 58-67. [93] M. Shahawy, C. Cai, Enhancement of the performance of prestressed concrete girders using strand anchorage, PCI Journal 46 (5) (2001) 82-88. [94] A. Arab, Finite Element Modeling of Pretensioned Concrete Girders: A Methodological Approach with Applications in Large Strands and End Zone Cracking, UMI Dissertation publishing, 2012. [95] A. Arab, S. Badie, M. Manzari, B. Khaleghi, S. Seguirant, D. Chapman, analytical investigation and monitoring of end-zone reinforcement of the alaskan way viaduct super girders, PCI Journal 59 (2) (2014) 109-128. [96] H. Hamilton, G. Consolazio, E. Brandon, End region detailing of pretensioned concrete bridge girders, Tech. rep., University of Florida (2013). [97] P. Okumus, M. Oliva, Finite element analysis of deep wide-flanged prestressed girders, Tech. rep., Wisconsin Highway Research Program (2011). [98] P. Okumus, M. G. Oliva, S. Becker, Nonlinear finite element modeling of cracking at ends of pretensioned bridge girders, Engineering Structures 40 (2012) 267-275. doi:10.1016/j.engstruct.2012.02.033. [99] P. Okumus, M. G. Oliva, Evaluation of crack control methods for end zone cracking in prestressed concrete bridge girders, PCI Journal 58 (2013) 91-105. [100] B. Belletti, C. Damoni, M. Hendriks, Development of guidelines for nonlinear finite element analyses of existing reinforced and prestressed beams, European Journal of Environmental and Civil Engineering 15 (2012) 1361–1384. [101] O. Yapar, P. Basu, N. Nordendale, Accurate finite element modeling of pretensioned prestressed concrete beams, Engineering Structures 101 (2015) 163 - 178. doi:http://dx.doi.org/10.1016/j.engstruct.2015.07.018. URL http://www.sciencedirect.com/science/article/pii/S0141029615004617 [102] C. Tuan, S. Yehia, N. Jongpitaksseel, M. Tadros, End zone reinforcement for pretensioned concrete girders, PCI Journal (2004) 16. [103] R. Steensels, L. Vandewalle, H. Degée, A bond-slip modelling approach for the transfer length of pretensioned concrete, Proceedings of the 27th Biennial National Conference of the Concrete Institute of Australia in conjunction with the 69th RILEM Week 1 (2015) 55-62. [104] R. Steensels, L. Vandewalle, B. Vandoren, H. Degée, A two-stage modelling approach for the analysis of the stress distribution in anchorage zones of pre-tensioned, concrete elements, Engineering Structures 143 (2017) 384-397. doi:https://doi.org/10.1016/j.engstruct.2017.04.011. URL http://www.sciencedirect.com/science/article/pii/S0141029617311513[105] M. Jonna, P. K. Wijtze, DIANA (release 9.5) User's Manual Element Library, TNO DIANA nv, Delftechpark 19a, Delft, The Netherlands, 2014. [106] N. Bodapati, W. Zhao, R. Peterman, C. Wu, B. Beck, M. Haynes, J. Holste, Influence of indented wire geometry and concrete parameters on the transfer length in prestressed concrete crossties, Proceedings of the 2013 Joint Raill Conference April 15-18doi:10.1115/JRC2013-2463. [107] R. De Borst, M. A. Crisfield, J. J. Remmers, C. V. Verhoosel, Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition, Wiley, 2012. [108] P. Okumus, R. P. Kristam, M. D. Arancibia, Sources of crack growth in pretensioned concrete-bridge girder anchorage zones after detensioning, Journal of Bridge Engineering 21 (10) (2016) 04016072-1-04016072-10. doi:10.1061/(ASCE)BE.1943-5592.0000928. [109] W. Ritter, Die bauweise hennebique, Schweizerische Bauzeitung 33 (7) (1899) 49-52. [110] J. Schlaich, K. Schafer, M. Jennewein, Toward consistent design of structural concrete, PCI Journal 32 (3) (1987) 74-150. [111] G. Morcous, K. Hanna, M. K. Tadros, Use of 0.7-in.-diameter strands in pretensioned bridge girders, PCI Journal 56 (4) (2011) 65-82.-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
item.contributorSTEENSELS, Rik-
item.fullcitationSTEENSELS, Rik (2018) End zone design and detailing of pre-tensioned concrete elements.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
Appears in Collections:Phd Theses
Research publications
Files in This Item:
File Description SizeFormat 
Thesis_RiST.pdf12.95 MBAdobe PDFView/Open
Show simple item record

Page view(s)

140
checked on May 20, 2022

Download(s)

78
checked on May 20, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.