Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26735
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVANHOOF, Koen-
dc.contributor.authorYARAHMADI, Aziz-
dc.date.accessioned2018-09-20T13:58:00Z-
dc.date.available2018-09-20T13:58:00Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/1942/26735-
dc.description.abstractnot available-
dc.language.isoen-
dc.titleEnhanced Machine Learning approaches in Text Analysis for Business Intelligence: The appealing story of documents-
dc.typeTheses and Dissertations-
local.format.pages193-
local.bibliographicCitation.jcatT1-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
item.accessRightsOpen Access-
item.fullcitationYARAHMADI, Aziz (2018) Enhanced Machine Learning approaches in Text Analysis for Business Intelligence: The appealing story of documents.-
item.contributorYARAHMADI, Aziz-
item.fulltextWith Fulltext-
Appears in Collections:PhD theses
Research publications
Files in This Item:
File Description SizeFormat 
PhD Thesis Final-Aziz Yarahmadi-070918.pdf2.22 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.