Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/26735Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | VANHOOF, Koen | - |
| dc.contributor.author | YARAHMADI, Aziz | - |
| dc.date.accessioned | 2018-09-20T13:58:00Z | - |
| dc.date.available | 2018-09-20T13:58:00Z | - |
| dc.date.issued | 2018 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/26735 | - |
| dc.description.abstract | not available | - |
| dc.language.iso | en | - |
| dc.title | Enhanced Machine Learning approaches in Text Analysis for Business Intelligence: The appealing story of documents | - |
| dc.type | Theses and Dissertations | - |
| local.format.pages | 193 | - |
| local.bibliographicCitation.jcat | T1 | - |
| local.type.refereed | Non-Refereed | - |
| local.type.specified | Phd thesis | - |
| item.fulltext | With Fulltext | - |
| item.fullcitation | YARAHMADI, Aziz (2018) Enhanced Machine Learning approaches in Text Analysis for Business Intelligence: The appealing story of documents. | - |
| item.contributor | YARAHMADI, Aziz | - |
| item.accessRights | Open Access | - |
| Appears in Collections: | PhD theses Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| PhD Thesis Final-Aziz Yarahmadi-070918.pdf | 2.22 MB | Adobe PDF | View/Open |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.