Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27153
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZeifang, Jonas-
dc.contributor.authorKAISER, Klaus-
dc.contributor.authorBeck, Andrea-
dc.contributor.authorSCHUETZ, Jochen-
dc.contributor.authorMunz, Claus-Dieter-
dc.date.accessioned2018-10-22T08:28:34Z-
dc.date.available2018-10-22T08:28:34Z-
dc.date.issued2018-
dc.identifier.citationCommunications in Applied Mathematics and Computational Science, 13(2), p. 243-270-
dc.identifier.issn1559-3940-
dc.identifier.urihttp://hdl.handle.net/1942/27153-
dc.description.abstractWe consider the efficient approximation of low Mach number flows by a high-order scheme, coupling a discontinuous Galerkin (DG) discretization in space with an implicit/explicit (IMEX) discretization in time. The splitting into linear implicit and nonlinear explicit parts relies heavily on the incompressible solution. The method has been originally developed for a singularly perturbed ODE and applied to the isentropic Euler equations. Here, we improve, extend, and investigate the so-called RS-IMEX splitting method. The resulting scheme can cope with a broader range of Mach numbers without running into roundoff errors, it is extended to realistic physical boundary conditions, and it is shown to be highly efficient in comparison to more standard solution techniques.-
dc.description.sponsorshipJonas Zeifang has been supported by the German Research Foundation (DFG) through the International Research Training Group GRK 2160: Droplet Interaction Technologies (DROPIT). The computations with the FLEXI framework have been conducted on the Cray XC40 at the High Performance Computing Center Stuttgart under the hpcdg project. Klaus Kaiser has been partially supported by the German Research Foundation (DFG) through project NO 361/6-1; his study was supported by the Special Research Fund (BOF) of Hasselt University-
dc.language.isoen-
dc.publisherMATHEMATICAL SCIENCE PUBL-
dc.rights© 2018 Mathematical Sciences Publishers-
dc.subject.otherdiscontinuous Galerkin; IMEX-Runge-Kutta; low Mach number; splitting; asymptotic preserving-
dc.titleEfficient high-order discontinuous Galerkin computations of low Mach number flows-
dc.typeJournal Contribution-
dc.identifier.epage270-
dc.identifier.issue2-
dc.identifier.spage243-
dc.identifier.volume13-
local.bibliographicCitation.jcatA1-
local.publisher.placeUNIV CALIFORNIA, DEPT MATHEMATICS, BERKELEY, CA 94720-3840 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.source.typeArticle-
dc.identifier.doi10.2140/camcos.2018.13.243-
dc.identifier.isiWOS:000455175000004-
dc.identifier.eissn-
local.provider.typeWeb of Science-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.validationecoom 2020-
item.fullcitationZeifang, Jonas; KAISER, Klaus; Beck, Andrea; SCHUETZ, Jochen & Munz, Claus-Dieter (2018) Efficient high-order discontinuous Galerkin computations of low Mach number flows. In: Communications in Applied Mathematics and Computational Science, 13(2), p. 243-270.-
item.contributorSCHUETZ, Jochen-
item.contributorKAISER, Klaus-
item.contributorBeck, Andrea-
item.contributorMunz, Claus-Dieter-
item.contributorZeifang, Jonas-
crisitem.journal.issn1559-3940-
crisitem.journal.eissn2157-5452-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
main.pdfPeer-reviewed author version5.8 MBAdobe PDFView/Open
10.2140@camcos.2018.13.243.pdf
  Restricted Access
Published version6.39 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

5
checked on Jun 29, 2022

Page view(s)

64
checked on Jul 2, 2022

Download(s)

222
checked on Jul 2, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.