Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27292
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBABAYIGIT, Aslihan-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorBOYEN, Hans-Gerd-
dc.contributor.authorCONINGS, Bert-
dc.date.accessioned2018-11-06T15:24:37Z-
dc.date.available2018-11-06T15:24:37Z-
dc.date.issued2018-
dc.identifier.citationJoule, 2(7), p. 1205-1209-
dc.identifier.issn2542-4351-
dc.identifier.urihttp://hdl.handle.net/1942/27292-
dc.description.abstractThe rapid development of lead halide perovskites has already laid much of the groundwork for the eventual commercialization of corresponding opto-electronics, particularly solar cells. Nevertheless, several key challenges remain in the ‘lab-to-fab’ process, among which is the convenient fabrication of large-area high quality perovskite films. Herein, gas quenching (GQ) is highlighted as a deposition strategy that has been proven reproducible and composition-independent in a laboratory environment, and shows clear signs of vast potential for large-area fabrication.-
dc.description.sponsorshipA.B. is a PhD fellow of the Research Foundation Flanders (FWO). B.C. is a postdoctoral research fellow of FWO. The authors gratefully acknowledge Jeol Europe SAS for making scanning electron microscopy images of the perovskite layer during a demonstra- tion on a Jeol JSM-7900F FEG-SEM.-
dc.language.isoen-
dc.rightsNot an open acces Journal. For more detailed information regarding the copryright, please contact: aslihan.babayigit@uhasselt.be-
dc.subject.otherPhotovoltaics; Photovoltaic perovskites; Large area; Deposition; Commercialisation-
dc.titleGas Quenching for Perovskite Thin Film Deposition-
dc.typeJournal Contribution-
dc.identifier.epage1209-
dc.identifier.issue7-
dc.identifier.spage1205-
dc.identifier.volume2-
local.bibliographicCitation.jcatA2-
dc.description.notesNot an open acces Journal. For more detailed information regarding the copryright, please contact: aslihan.babayigit@uhasselt.be-
dc.relation.references1. Correa-Baena, J.-P., Saliba, M., Buonassisi, T., Gra ̈ tzel, M., Abate, A., Tress, W., and Hagfeldt, A. (2017). Promises and challenges of perovskite solar cells. Science 358, 739–744. 2. Eperon, G.E., Ho ̈ rantner, M.T., and Snaith, H.J. (2017). Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095. 3. Babayigit, A., Ethirajan, A., Muller, M., and Conings, B. (2016). Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251. 4. Qiu, L., Ono, L.K., and Qi, Y. (2018). Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Mater. Today Energy 7, 169–189. 5. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903. 6. Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.-B., and Spiccia, L. (2014). A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin- film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903. 7. Huang, F., Dkhissi, Y., Huang, W., Xiao, M., Benesperi, I., Rubanov, S., Zhu, Y., Lin, X., Jiang, L., Zhou, Y., et al. (2014). Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10–18. 8. Conings, B., Babayigit, A., Klug, M.T., Bai, S., Gauquelin, N., Sakai, N., Wang, J.T., Verbeeck, J., Boyen, H.-G., and Snaith, H.J. (2016). A universal deposition protocol for planar heterojunction solar cells with high efficiency based on hybrid lead halide perovskite families. Adv. Mater. 28, 10701– 10709. 9. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., and Park, N.-G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699. 10. Zhang, M., Yun, J.S., Ma, Q., Zheng, J., Lau, C.F.J., Deng, X., Kim, J., Kim, D., Seidel, J., Green, M.A., et al. (2017). High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett. 2, 438–444. 11. Bush, K.A., Frohna, K., Prasanna, R., Beal, R.E., Leijtens, T., Swifter, S.A., and McGehee, M.D. (2018). Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435. 12. Gao, L.-L., Li, C.-X., Li, C.-J., and Yang, G.-J. (2017). Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. J. Mater. Chem. A 5, 1548–1557. 13. Gao, L.-L., Zhang, K.-J., Chen, N., and Yang, G.-J. (2017). Boundary layer tuning induced fast and high performance perovskite film precipitation by facile one-step solution engineering. J. Mater. Chem. A 5, 18120– 18127. 14. Vak, D., Hwang, K., Faulks, A., Jung, Y.-S., Clark, N., Kim, D.-Y., Wilson, G.J., and Watkins, S.E. (2015). 3D printer based slot- die coater as a lab-to-fab translation tool for solution-processed solar cells. Adv. Energy Mater. 5, 1401539. 15. Zuo, C., Vak, D., Angmo, D., Ding, L., and Gao, M. (2018). One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192.-
local.type.refereedRefereed-
local.type.specifiedEditorial Material-
dc.identifier.doi10.1016/j.joule.2018.06.009-
dc.identifier.isi000439698900002-
item.accessRightsRestricted Access-
item.fullcitationBABAYIGIT, Aslihan; D'HAEN, Jan; BOYEN, Hans-Gerd & CONINGS, Bert (2018) Gas Quenching for Perovskite Thin Film Deposition. In: Joule, 2(7), p. 1205-1209.-
item.fulltextWith Fulltext-
item.contributorBABAYIGIT, Aslihan-
item.contributorD'HAEN, Jan-
item.contributorBOYEN, Hans-Gerd-
item.contributorCONINGS, Bert-
crisitem.journal.issn2542-4351-
crisitem.journal.eissn2542-4351-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
10.1016@j.joule.2018.06.009.pdf
  Restricted Access
Published version944.55 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

18
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

62
checked on Apr 22, 2024

Page view(s)

100
checked on Sep 7, 2022

Download(s)

64
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.