Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27306
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorFAES, Christel-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2018-11-08T12:19:43Z-
dc.date.available2018-11-08T12:19:43Z-
dc.date.issued2019-
dc.identifier.citationCommunications in statistics. Simulation and computation, 48(3), p. 819-836-
dc.identifier.issn0361-0918-
dc.identifier.urihttp://hdl.handle.net/1942/27306-
dc.description.abstractThe combined model accounts for different forms of extra-variability and has traditionally been applied in the likelihood framework, or in the Bayesian setting via Markov chain Monte Carlo. In this article, integrated nested Laplace approximation is investigated as an alternative estimation method for the combined model for count data, and compared with the former estimation techniques. Longitudinal, spatial, and multi-hierarchical data scenarios are investigated in three case studies as well as a simulation study. As a conclusion, integrated nested Laplace approximation provides fast and precise estimation, while avoiding convergence problems often seen when using Markov chain Monte Carlo.-
dc.description.sponsorshipFinancial support from the IAP research network #P7/06 of the Belgian Government (Belgian Science Policy) and the Research Foundation Flanders (12S7217N) is gratefully acknowledged.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherBayesian inference-
dc.subject.otherCombined model-
dc.subject.otherCount data-
dc.subject.otherIntegrated nested Laplace approximation-
dc.subject.otherSpatial data analysis-
dc.titleIntegrated nested Laplace approximation as a new estimation method for the combined model: a simulation study-
dc.typeJournal Contribution-
dc.identifier.epage836-
dc.identifier.issue3-
dc.identifier.spage819-
dc.identifier.volume48-
local.bibliographicCitation.jcatA1-
local.publisher.place530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA-
dc.relation.referencesAregay,M., Z. Shkedy, and G.Molenberghs. 2013. A hierarchical Bayesian approach for the analysis of longitudinal count data with overdispersion: A simulation study. Computational Statistics & Data Analysis 57:233–45. Besag, J., and C.Kooperberg. 1995. On conditional and intrinsic autoregressions. Biometrika 82:733–46. Booth, J. G., G. Casella, H. Friedl, and J. P. Hobert. 2003. Negative binomial loglinear mixed models. Statistical Modelling 3:179–81. Brooks, S. P., and A. Gelman. 1997. GeneralMethods forMonitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics 7:434–55. Efendi,A., G.Molenberghs, E. N.Njagi, and P.Dendale. 2013. A jointmodel for longitudinal continuous and time-to-event outcomes with direct marginal interpretation. Biometrical Journal 55:572–88. Faes, C., J. T. Ormerod, and M. P. Wand. 2011. Variational Bayesian inference for parametric and nonparametric regression with missing data. Journal of the American Statistical Association 106 (495):959–971. Faught, E., B. J.Wilder, R. E. Ramsay, R. A. Reife, L. D. Kramer, G.W. Pledger, and R. M. Karim. 1996. Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology 46:1684–90. Fong, Y., H. Rue, and J. Wakefield. 2010. Bayesian inference for generalized linear mixed models. Biostatistics 11:397–412. Gelman, A. E, and D. Rubin. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7:457–511. Ghebretinsae, A. H., C. Faes, G. Molenberghs, H. Geys, and B.-J. Van de Leede. 2012. Joint modeling of hierarchically clustered and overdispersed non-Gaussian continuous outcomes for comet assay data. Pharmaceutical Statistics 11:449–55. Goeyvaerts, N., E. Santermans, G. Potter, A. Torneri, K. Van Kerckhove, L. Willem, M. Aerts, P. Beutels, and N. Hens. 2017. Household members do not contact each other at random: Implications for infectious disease modelling. DOI://dx.doi.org/10.1101/220202. Available at: https://www.biorxiv.org/content/early/2017/11/16/220202. Hinde, J., and C. G. B.Demétrio. 1998.Overdispersion:Models and estimation. Computational Statistics and Data Analysis 27:151–70. Kalema, G., and G. Molenberghs. 2014. Pseudo-likelihood methodology for hierarchical count data. Communications in Statistics: Theory and Methods 43:4790–805. Kassahun, W., T. Neyens, G. Molenberghs, C. Faes, and G. Verbeke. 2012. Modeling overdispersed longitudinal binary data using a combined beta and normal random-effects model. Archives of Public Health 70:7.DOI: 10.1186/0778-7367-70-7.Available at: https://archpublichealth.biomedcentral.com/articles/10.1186/0778-7367-70-7. Kassahun,W., T. Neyens, G.Molenberghs, C. Faes, and G. Verbeke. 2014.Marginalized multilevel hurdle and zero-inflatedmodels for overdispersed and correlated count datawith excess zeros. Statistics in Medicine, DOI: 10.1002/sim.6237. pp. 4402–4419. Lawson,A. B. 2013. Bayesian DiseaseMapping:HierarchicalModeling in Spatial Epidemiology. Second Edition. Boca Rotan: Chapman & Hall. Loesbergh, D., E. Cloes, L. Op de Beeck, J. L. Rummens, J. Vanden Brande, C. Faes, L. Bruckers, G. Molenberghs, D. Dhollander, E. Kellen, K. Hensen, D. Lathouwers, E. Meekers, and F. Buntinx. 2007. Ten Years of Cancer in the Belgian Province of Limburg. Hasselt, Leuven: Limburgs Kankerregister. Molenberghs, G., and G. Verbeke. 2005. Models for Discrete Longitudinal Data. NewYork: Springer. Molenberghs, G., G. Verbeke, and G. Demétrio. 2007. An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis 13:513–31. Molenberghs, G., G. Verbeke, G. Demétrio, and A. Vieira. 2010. A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical Science 25:325–47. Nelder, J. A., and R.W.M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A 135:370–84. Neyens, T., C. Faes, and G. Molenberghs. 2012. A generalized Poisson-Gamma model for spatially overdispersed data. Spatial and Spatio-temporal Epidemiology 3:185–94. Njagi, E. N.,G.Molenberghs,G.Verbeke,M.G. Kenward, P.Dendale, and K.Willekens. 2013. A flexible joint-modelling framework for longitudinal and time-to-event data with overdispersion. Statistical Methods in Medical Research 25:1661–1676. Paul, M., A. Riebler, L. M. Bachmann, H. Rue, and L. Held. 2010. Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations. Statistics in Medicine 29:1325–39. Riebler, A., L. Held, H. Rue, and M. Bopp. 2011. Gender-specific differences and the impact of family integration on time trends in age-stratified Swiss suicide rates. Journal of the Royal Statistical Society 175:473–90. Ripley, B. D. 1987. Stochastic Simulation. New York: Wiley. Rue, H., S. Martino, and N. Chopin. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society 71: 319–92. Schrödle, B., and L. Held. 2010. Spatio-temporal disease mapping using INLA. Environmetrics 22: 725–34. Taylor, B. M., and P. J. Diggle. 2014. INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. Journal of Statistical Computation and Simulation 84:2266–84. DOI: 10.1080/00949655.2013.788653.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.source.typeArticle-
dc.identifier.doi10.1080/03610918.2017.1400053-
dc.identifier.isiWOS:000465355800012-
dc.identifier.eissn1532-4141-
local.provider.typeWeb of Science-
local.uhasselt.internationalno-
item.contributorNEYENS, Thomas-
item.contributorFAES, Christel-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationNEYENS, Thomas; FAES, Christel & MOLENBERGHS, Geert (2019) Integrated nested Laplace approximation as a new estimation method for the combined model: a simulation study. In: Communications in statistics. Simulation and computation, 48(3), p. 819-836.-
crisitem.journal.issn0361-0918-
crisitem.journal.eissn1532-4141-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
LSSP_A_1400053_O.pdf
  Restricted Access
Early view862.69 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

3
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

3
checked on Oct 14, 2024

Page view(s)

68
checked on Sep 7, 2022

Download(s)

156
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.