Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27342
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerrarotti, Flavio-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.contributor.authorVIRTEMA, Jonni-
dc.date.accessioned2018-11-13T10:18:05Z-
dc.date.available2018-11-13T10:18:05Z-
dc.date.issued2018-
dc.identifier.citationGhica, Dan; Jung, Achim (Ed.). 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Schloss Dagstuhl -- Leibniz-Zentrum für Informatik,p. 1-18 (Art N° 22)-
dc.identifier.isbn9783959770880-
dc.identifier.issn1868-8969-
dc.identifier.urihttp://hdl.handle.net/1942/27342-
dc.description.abstractSecond-order transitive-closure logic, SO(TC), is an expressive declarative language that captures the complexity class PSPACE. Already its monadic fragment, MSO(TC), allows the expression of various NP-hard and even PSPACE-hard problems in a natural and elegant manner. As SO(TC) offers an attractive framework for expressing properties in terms of declaratively specified computations, it is interesting to understand the expressivity of different features of the language. This paper focuses on the fragment MSO(TC), as well on the purely existential fragment SO(2TC)(∃); in 2TC, the TC operator binds only tuples of relation variables. We establish that, with respect to expressive power, SO(2TC)(∃) collapses to existential first-order logic. In addition we study the relationship of MSO(TC) to an extension of MSO(TC) with counting features (CMSO(TC)) as well as to order-invariant MSO. We show that the expressive powers of CMSO(TC) and MSO(TC) coincide. Moreover we establish that, over unary vocabularies, MSO(TC) strictly subsumes order-invariant MSO.-
dc.description.sponsorshipThe research reported in this paper results from the joint project Higher-Order Logics and Structures supported by the Austrian Science Fund (FWF: [I2420-N31]) and the Research Foundation Flanders (FWO: [G0G6516N]).-
dc.language.isoen-
dc.publisherSchloss Dagstuhl -- Leibniz-Zentrum für Informatik-
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics (LIPIcs)-
dc.rights© Flavio Ferrarotti, Jan Van den Bussche, and Jonni Virtema; licensed under Creative Commons License CC-BY-
dc.subject.otherexpressive power; higher order logics; descriptive complexity-
dc.titleExpressivity Within Second-Order Transitive-Closure Logic-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsGhica, Dan-
local.bibliographicCitation.authorsJung, Achim-
local.bibliographicCitation.conferencedate04-07/09/2018-
local.bibliographicCitation.conferencename27th EACSL Annual Conference on Computer Science Logic (CSL 2018)-
local.bibliographicCitation.conferenceplaceBirmingham, UK-
dc.identifier.epage18-
dc.identifier.spage1-
local.bibliographicCitation.jcatC1-
local.publisher.placeDagstuhl, Germany-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.bibliographicCitation.artnr22-
dc.identifier.doi10.4230/LIPIcs.CSL.2018.22-
local.bibliographicCitation.btitle27th EACSL Annual Conference on Computer Science Logic (CSL 2018)-
item.fulltextWith Fulltext-
item.contributorFerrarotti, Flavio-
item.contributorVAN DEN BUSSCHE, Jan-
item.contributorVIRTEMA, Jonni-
item.fullcitationFerrarotti, Flavio; VAN DEN BUSSCHE, Jan & VIRTEMA, Jonni (2018) Expressivity Within Second-Order Transitive-Closure Logic. In: Ghica, Dan; Jung, Achim (Ed.). 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Schloss Dagstuhl -- Leibniz-Zentrum für Informatik,p. 1-18 (Art N° 22).-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
LIPIcs-CSL-2018-22.pdfPublished version499.06 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.