Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27465
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROBYNS, Pieter-
dc.contributor.authorQUAX, Peter-
dc.contributor.authorLAMOTTE, Wim-
dc.date.accessioned2018-11-30T15:45:13Z-
dc.date.available2018-11-30T15:45:13Z-
dc.date.issued2018-
dc.identifier.citationIACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(1), p.1-24-
dc.identifier.issn2569-2925-
dc.identifier.urihttp://hdl.handle.net/1942/27465-
dc.description.abstractSensitive cryptographic information, e.g. AES secret keys, can be extracted from the electromagnetic (EM) leakages unintentionally emitted by a device using techniques such as Correlation Electromagnetic Analysis (CEMA). In this paper, we introduce Correlation Optimization (CO), a novel approach that improves CEMA attacks by formulating the selection of useful EM leakage samples in a trace as a machine learning optimization problem. To this end, we propose the correlation loss function, which aims to maximize the Pearson correlation between a set of EM traces and the true AES key during training. We show that CO works with high-dimensional and noisy traces, regardless of time-domain trace alignment and without requiring prior knowledge of the power consumption characteristics of the cryptographic hardware. We evaluate our approach using the ASCAD benchmark dataset and a custom dataset of EM leakages from an Arduino Duemilanove, captured with a USRP B200 SDR. Our results indicate that the masked AES implementation used in all three ASCAD datasets can be broken with a shallow Multilayer Perceptron model, whilst requiring only 1,000 test traces on average. A similar methodology was employed to break the unprotected AES implementation from our custom dataset, using 22,000 unaligned and unfiltered test traces.-
dc.description.sponsorshipResearch Foundation Flanders (FWO),grant number 1S14916N.-
dc.language.isoen-
dc.rightsLicensed under Creative Commons License CC-BY 4.0.-
dc.subject.otherCorrelation Optimization; Software Defined Radio; Correlation Electro-magnetic Analysis; correlation loss; machine learning-
dc.titleImproving CEMA using Correlation Optimization-
dc.typeJournal Contribution-
dc.identifier.epage24-
dc.identifier.issue1-
dc.identifier.spage1-
dc.identifier.volume2019-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.13154/tches.v2019.i1.1-24-
item.validationvabb 2020-
item.contributorROBYNS, Pieter-
item.contributorQUAX, Peter-
item.contributorLAMOTTE, Wim-
item.fullcitationROBYNS, Pieter; QUAX, Peter & LAMOTTE, Wim (2018) Improving CEMA using Correlation Optimization. In: IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(1), p.1-24.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn2569-2925-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
robyns2018improving.pdfPublished version2.53 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.