Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27465
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROBYNS, Pieter-
dc.contributor.authorQUAX, Peter-
dc.contributor.authorLAMOTTE, Wim-
dc.date.accessioned2018-11-30T15:45:13Z-
dc.date.available2018-11-30T15:45:13Z-
dc.date.issued2018-
dc.identifier.citationIACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(1), p.1-24-
dc.identifier.issn2569-2925-
dc.identifier.urihttp://hdl.handle.net/1942/27465-
dc.description.abstractSensitive cryptographic information, e.g. AES secret keys, can be extracted from the electromagnetic (EM) leakages unintentionally emitted by a device using techniques such as Correlation Electromagnetic Analysis (CEMA). In this paper, we introduce Correlation Optimization (CO), a novel approach that improves CEMA attacks by formulating the selection of useful EM leakage samples in a trace as a machine learning optimization problem. To this end, we propose the correlation loss function, which aims to maximize the Pearson correlation between a set of EM traces and the true AES key during training. We show that CO works with high-dimensional and noisy traces, regardless of time-domain trace alignment and without requiring prior knowledge of the power consumption characteristics of the cryptographic hardware. We evaluate our approach using the ASCAD benchmark dataset and a custom dataset of EM leakages from an Arduino Duemilanove, captured with a USRP B200 SDR. Our results indicate that the masked AES implementation used in all three ASCAD datasets can be broken with a shallow Multilayer Perceptron model, whilst requiring only 1,000 test traces on average. A similar methodology was employed to break the unprotected AES implementation from our custom dataset, using 22,000 unaligned and unfiltered test traces.-
dc.description.sponsorshipResearch Foundation Flanders (FWO),grant number 1S14916N.-
dc.language.isoen-
dc.rightsLicensed under Creative Commons License CC-BY 4.0.-
dc.subject.otherCorrelation Optimization; Software Defined Radio; Correlation Electro-magnetic Analysis; correlation loss; machine learning-
dc.titleImproving CEMA using Correlation Optimization-
dc.typeJournal Contribution-
dc.identifier.epage24-
dc.identifier.issue1-
dc.identifier.spage1-
dc.identifier.volume2019-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.13154/tches.v2019.i1.1-24-
item.fulltextWith Fulltext-
item.fullcitationROBYNS, Pieter; QUAX, Peter & LAMOTTE, Wim (2018) Improving CEMA using Correlation Optimization. In: IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(1), p.1-24.-
item.validationvabb 2020-
item.accessRightsOpen Access-
item.contributorROBYNS, Pieter-
item.contributorQUAX, Peter-
item.contributorLAMOTTE, Wim-
crisitem.journal.issn2569-2925-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
robyns2018improving.pdfPublished version2.53 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

32
checked on Oct 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.