Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27525
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKIFLE, Yimer Wasihun-
dc.contributor.authorHENS, Niel-
dc.contributor.authorFAES, Christel-
dc.date.accessioned2018-12-19T07:35:38Z-
dc.date.available2018-12-19T07:35:38Z-
dc.date.issued2017-
dc.identifier.citationENVIRONMENTAL AND ECOLOGICAL STATISTICS, 24(4), p. 551-586-
dc.identifier.issn1352-8505-
dc.identifier.urihttp://hdl.handle.net/1942/27525-
dc.description.abstractModels for multivariate space-time geostatistical data have received a growing interest in spatial and spatiotemporal epidemiology. However, specifying models that can capture associations within and among multivariate measurements is usually a challenge. The main goal of this paper is to introduce and review cross-covariance functions that are rich in structure and are computationally feasible. Integrated nested Laplace approximation combined with stochastic partial differential equations were used for inference and prediction, as a fast and precise alternative to the computationally intensive Markov chain Monte Carlo methods. A large set of models is considered in this paper: models assuming independent, shared or correlated spatial and temporal processes (with nine possible combinations), and models with independent, shared and linear models of coregionalization spatiotemporal processes. Different processes are applied to Culicoides data and compared. Bayesian spatial prediction results show that the central and Northeastern parts of Belgium had the highest prevalence of Culicoides in summer months and the lowest prevalence in winter months.-
dc.description.sponsorshipIAP Research Network of the Belgian State (Belgian Science Policy) [P7/06]; University of Antwerp scientific chair in Evidence-Based Vaccinology - Pfizer; GSK; Methusalem research Grant from the Flemish government; GOA research fund at the University of Antwerp; Antwerp Study Centre for Infectious Diseases (ASCID); network of Excellence, EPIZONE [FOOD-CT-2006 016236]-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subject.otherIntegrated nested Laplace approximation; Linear models of coregionalization; Multivariate spatiotemporal data; Stochastic partial differential equations-
dc.subject.otherIntegrated nested Laplace approximation; Linear models of coregionalization; Multivariate spatiotemporal data; Stochastic partial differential equations-
dc.titleCross-covariance functions for additive and coupled joint spatiotemporal SPDE models in R-INLA-
dc.typeJournal Contribution-
dc.identifier.epage586-
dc.identifier.issue4-
dc.identifier.spage551-
dc.identifier.volume24-
local.format.pages36-
local.bibliographicCitation.jcatA1-
dc.description.notes[Kifle, Yimer Wasihun; Hens, Niel] Univ Antwerp, Vaccine & Infect Dis Inst, Ctr Hlth Econ Res & Modeling Infect Dis, Antwerp, Belgium. [Kifle, Yimer Wasihun; Hens, Niel; Faes, Christel] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSt, Diepenbeek, Belgium.-
local.publisher.placeDORDRECHT-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s10651-017-0391-1-
dc.identifier.isi000416331200005-
item.validationecoom 2018-
item.contributorKIFLE, Yimer Wasihun-
item.contributorHENS, Niel-
item.contributorFAES, Christel-
item.fullcitationKIFLE, Yimer Wasihun; HENS, Niel & FAES, Christel (2017) Cross-covariance functions for additive and coupled joint spatiotemporal SPDE models in R-INLA. In: ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 24(4), p. 551-586.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1352-8505-
crisitem.journal.eissn1573-3009-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Kifle2017_Article_Cross-covarianceFunctionsForAd.pdf
  Restricted Access
Published version3.23 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.