Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLAWSON, Andrew-
dc.contributor.authorCarroll, Rachel-
dc.contributor.authorFAES, Christel-
dc.contributor.authorKirby, Russell S.-
dc.contributor.authorAREGAY, Mehreteab-
dc.contributor.authorWATJOU, Kevin-
dc.date.accessioned2018-12-19T09:00:02Z-
dc.date.available2018-12-19T09:00:02Z-
dc.date.issued2017-
dc.identifier.citationENVIRONMETRICS, 28(8) (Art N° e2465)-
dc.identifier.issn1180-4009-
dc.identifier.urihttp://hdl.handle.net/1942/27526-
dc.description.abstractIt is often the case that researchers wish to simultaneously explore the behavior of, and estimate the overall risk for, multiple related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatiotemporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socioeconomic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large-scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results, which are focused on four model variants, suggest that all models possess the ability to recover the simulation ground truth and display an improved model fit over two baseline Knorr-Held spatiotemporal interaction model variants in a real data application.-
dc.description.sponsorshipNIH [R01CA172805]-
dc.language.isoen-
dc.publisherWILEY-
dc.subject.otherMCMC; mixture model; model selection; Poisson; shared components-
dc.subject.otherMCMC; mixture model; model selection; Poisson; shared components-
dc.titleSpatiotemporal multivariate mixture models for Bayesian model selection in disease mapping-
dc.typeJournal Contribution-
dc.identifier.issue8-
dc.identifier.volume28-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notes[Lawson, Andrew B.; Carroll, Rachel; Aregay, Mehreteab] Med Univ South Carolina, Dept Publ Hlth Sci, 135 Cannon St, Charleston, SC 29425 USA. [Faes, Christel; Watjou, Kevin] Hasselt Univ, Interuniv Inst Stat & Stat Bioinformat, Hasselt, Belgium. [Kirby, Russell S.] Univ S Florida, Dept Community & Family Hlth, Tampa, FL 33612 USA.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre2465-
dc.identifier.doi10.1002/env.2465-
dc.identifier.isi000417157600002-
item.validationecoom 2018-
item.contributorLAWSON, Andrew-
item.contributorCarroll, Rachel-
item.contributorFAES, Christel-
item.contributorKirby, Russell S.-
item.contributorAREGAY, Mehreteab-
item.contributorWATJOU, Kevin-
item.fullcitationLAWSON, Andrew; Carroll, Rachel; FAES, Christel; Kirby, Russell S.; AREGAY, Mehreteab & WATJOU, Kevin (2017) Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping. In: ENVIRONMETRICS, 28(8) (Art N° e2465).-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1180-4009-
crisitem.journal.eissn1099-095X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Lawson_et_al-2017-Environmetrics.pdf
  Restricted Access
Published version565.74 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.