Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAELDERMANS, Tom-
dc.contributor.authorClaesen, Joyce-
dc.contributor.authorMAGGEN, Jens-
dc.contributor.authorCARLEER, Robert-
dc.contributor.authorYPERMAN, Jan-
dc.contributor.authorADRIAENSENS, Peter-
dc.contributor.authorSAMYN, Pieter-
dc.contributor.authorVANDAMME, Dries-
dc.contributor.authorCUYPERS, Ann-
dc.contributor.authorVANREPPELEN, Kenny-
dc.contributor.authorSCHREURS, Sonja-
dc.date.accessioned2019-01-28T14:25:37Z-
dc.date.available2019-01-28T14:25:37Z-
dc.date.issued2018-
dc.identifier.citationJOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 138, p. 218-230-
dc.identifier.issn0165-2370-
dc.identifier.urihttp://hdl.handle.net/1942/27659-
dc.description.abstractTwo different heat treatments for MDF, microwave assisted pyrolysis (MWP) and conventional pyrolysis (CPS), are investigated. The influence of different microwave absorbers (activated carbon (AC) and K2CO3) and different microwave powers in MWP and different temperatures in CPS on the characteristics of biochar is reviewed. Morphology and chemical properties of the obtained biochars are evaluated comparing biochar yield, ultimate analysis, proximate analysis, biochar stability test, FTIR spectroscopy and solid-state 13C CP/MAS NMR spectroscopy. The resulting biochars of both processes are compared to find the best production method. An increasing microwave power without the use of MWA, leads to a higher degree of aromaticity. The addition of increasing amounts of AC at low microwave power (300 W) leads to higher pyrolysis temperatures and more aromatic biochars. At 400 W a more aromatic biochar with a more open surface is achieved compared to 300 W. However, the addition of an increasing amount of AC as a MWA at 400 W induces a lower pyrolysis temperature with increasing biochar yields and decreasing aromaticity. K2CO3 is more effective as a MWA and produces more aromatic biochar at lower microwave power than when using AC. In general MWP yields a biochar with a higher degree of aromaticity at lower temperatures than CPS. Both CPS and MWP are viable options for transforming MDF into a value added biochar.-
dc.description.sponsorshipThis work was supported byAgentschap Innoveren en Ondernemen (VLAIO) [BM20160604]; European Institute of Technology (EIT); and Research Foundation Flanders (postdoctoral fellowship D. Vandamme [FWO - 12D8914N]). Koen Van Vinckenroye for support with the 13C solid state NMR measurements Elsy Thijssen and Martine Vanhamel for FTIR measurements This work was supported byAgentschap Innoveren en Ondernemen (VLAIO) [BM20160604]; European Institute of Technology (EIT); and Research Foundation Flanders (postdoctoral fellowship D. Vandamme [FWO – 12D8914N]).-
dc.language.isoen-
dc.rights2018 Published by Elsevier B.V-
dc.subject.otherMicrowave assisted pyrolysis-
dc.subject.otherMicrowave absorber-
dc.subject.otherBiochar-
dc.subject.otherMDF-
dc.subject.otherCarbonization-
dc.titleMicrowave assisted and conventional pyrolysis of MDF – characterization of the produced biochars-
dc.typeJournal Contribution-
dc.identifier.epage230-
dc.identifier.spage218-
dc.identifier.volume138-
local.bibliographicCitation.jcatA1-
dc.description.notesHaeldermans, Ttom.haeldermans@uhasselt.be (reprint author), Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. tom.haeldermans@uhasselt.be-
dc.relation.references[1] R. Garcia, F. Freire, Carbon footprint of particleboard: a comparison between ISO/ TS 14067, GHG Protocol, PAS 2050 and climate declaration, J. Clean. Prod. 66 (2014) 199–209, https://doi.org/10.1016/j.jclepro.2013.11.073. [2] Food and Agriculture Organistation of the United Nations, Food and Agriculture Data, (2017) (accessed August 30, 2018), http://www.fao.org/faostat/en/. [3] S. Reza, F. Teymour, V. Ehsan, Thin particleboard quality : effect of particle size on the properties of the panel, J. Indian Acad. Wood Sci. 13 (2016) 38–43, https://doi.org/10.1007/s13196-016-0163-9. [4] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, Pyrolysis of wood waste containing urea-formaldehyde and melamine-formaldehyde resins, J. Anal. Appl. Pyrolysis 81 (2008) 113–120, https://doi.org/10.1016/j.jaap.2007.09.007. [5] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, A. Zoulalian, Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins, J. Hazard. Mater. 159 (2008) 210–221, https://doi.org/10.1016/j.jhazmat.2008.02.003. [6] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, Journal of analytical and applied pyrolysis comparison of gasification and pyrolysis of thermal pre-treated wood board waste, J. Anal. Appl. Pyrolysis 85 (2009) 171–183, https://doi.org/10.1016/j.jaap.2008.11.014. [7] T.Q. Hu, Characterization of Lignocellulosic Materials, Blackwell Publishing Ltd, Oxford, 2008. [8] T. Kuppens, P. Rafiaani, K. Vanreppelen, J. Yperman, R. Carleer, S. Schreurs, T. Thewys, S. Van Passel, Combining Monte Carlo simulations and experimental design for incorporating risk and uncertainty in investment decisions for cleantech : a fast pyrolysis case study, Clean Technol. Hist. Environ. 20 (2018) 1195–1206, https://doi.org/10.1007/s10098-018-1543-1. [9] K. Vanreppelen, S. Vanderheyden, T. Kuppens, S. Schreurs, J. Yperman, R. Carleer, J. Yperman, R. Carleer, Activated carbon from pyrolysis of brewer spend grain: production and adsorption properties, Waste Manag. Res. 32 (2014) 634–645, https://doi.org/10.1177/0734242X14538306. [10] S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Bhutto, R. Abro, S.A. Mazari, B.S. Ali, An overview of effect of process parameters on hydrothermal carbonization of biomass An overview of e ff ect of process parameters on hydrothermal carbonization of biomass, Renew. Sustain. Energy Rev. 73 (2017) 1289–1299, https://doi.org/10.1016/j.rser.2016.12.122. [11] T. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass pyrolysis : A review of product properties and effects of pyrolysis parameters, Renew. Sustain. Energy Rev. 57 (2016) 1126–1140, https://doi.org/10.1016/j.rser.2015.12.185. [12] S. Wanga, G. Daia, H. Yangb, Z. Luo, Lignocellulosic biomass pyrolysis mechanism : a state-of-the-art review, Prog. Energy Combust. Sci. 62 (2017) 33–86, https://doi.org/10.1016/j.pecs.2017.05.004. [13] N.L. Panwar, R. Kothari, V.V. Tyagi, Thermo chemical conversion of biomass – Eco friendly energy routes, Renew. Sustain. Energy Rev. 16 (2012) 1801–1816, https://doi.org/10.1016/j.rser.2012.01.024. [14] J. Li, J. Dai, G. Liu, H. Zhang, Z. Gao, J. Fu, Y. He, Y. Huang, Biochar from microwave pyrolysis of biomass: a review, Biomass Bioenergy 94 (2016) 228–244, https://doi.org/10.1016/j.biombioe.2016.09.010. [15] Y. Zhang, P. Chen, S. Liu, P. Peng, M. Min, Y. Cheng, E. Anderson, N. Zhou, L. Fan, C. Liu, G. Chen, Y. Liu, H. Lei, B. Li, R. Ruan, Effects of feedstock characteristics on microwave-assisted pyrolysis – a review, Bioresour. Technol. 230 (2017) 143–151, https://doi.org/10.1016/j.biortech.2017.01.046. [16] S. Shiung, R. Keey, C. Kui, H.A. Chase, Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char, Appl. Catal. B, Environ. 176–177 (2015) 601–617, https://doi.org/10.1016/j.apcatb.2015.04.014. [17] M.J. Hervan, Q. Bu, J. Liang, Y. Liu, H. Mao, A. Shi, H. Lei, R. Ruan, A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals, Bioresour. Technol. 230 (2017) 112–121, https://doi.org/10.1016/j.biortech.2017.01.059. [18] S. Gao, K. Hoffman-Krull, A.L. Bidwell, T.H. DeLuca, Locally produced wood biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA, Agric. Ecosyst. Environ. 233 (2016) 43–54, https://doi.org/10.1016/j.agee.2016.08.028. [19] L.D. Burrell, F. Zehetner, N. Rampazzo, B. Wimmer, G. Soja, Long-term effects of biochar on soil physical properties, Geoderma 282 (2016) 96–102, https://doi.org/10.1016/j.geoderma.2016.07.019. [20] J.L.S. Joseph, Biochar for Environmental Management: Science and Technology,second ed., earthscan, London, 2015. [21] J. Maggen, R. Carleer, J. Yperman, A. De Vocht, S. Schreurs, G. Reggers, E. Thijsen, Biochar Derived From The Dry, Solid Fraction Of Pig Manure As Potential Fertilizer For Poor And Contaminated Soils 6 (2017), pp. 167–184, https://doi.org/10.5539/ sar.v6n2p167. [22] C. Santín, S.H. Doerr, A. Merino, T.D. Bucheli, R. Bryant, P. Ascough, X. Gao, C.A. Masiello, Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars, Nat. Sci. Reports. 7 (2017) 1–11, https://doi.org/10.1038/s41598-017-10455-2. [23] S.D.A. Joseph, Y.A. Lin, P.A. Munroe, C.H.A. Chia, J.C. Hook, An investigation into the reactions of biochar in soil, Aust. J. Soil Res. 48 (2010) 501–515, https://doi.org/10.1071/SR10009. [24] R. Luque, J.A. Menendez, A. Arenillasb, J. Cot, Microwave-assisted pyrolysis of biomass feedstocks : the way forward? Energy Environ. Sci. 5 (2012) 5481–5488, https://doi.org/10.1039/c1ee02450g. [25] K. Smets, P. Adriaensens, G. Reggers, S. Schreurs, R. Carleer, J. Yperman, Flash pyrolysis of rapeseed cake : Influence of temperature on the yield and the characteristics of the pyrolysis liquid, J. Anal. Appl. Pyrolysis 90 (2011) 118–125, https://doi.org/10.1016/j.jaap.2010.11.002. [26] W. Yunpu, D.A.I. Leilei, F.A.N. Liangliang, S. Shaoqi, L.I.U. Yuhuan, Review of microwave-assisted lignin conversion for renewable fuels and chemicals, J. Anal. Appl. Pyrolysis 119 (2016) 104–113, https://doi.org/10.1016/j.jaap.2016.03.011. [27] H. Xiao, H. Peng, S. Deng, X. Yang, Y. Zhang, Y. Li, Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation - Application in reactive black 5 adsorption from aqueous solution, Bioresour. Technol. 111 (2012) 127–133, https://doi.org/10.1016/j.biortech.2012.02.054. [28] Y. Fernández, J.A. Menéndez, Influence of feed characteristics on the microwaveassisted pyrolysis used to produce syngas from biomass wastes, J. Anal. Appl. Pyrolysis 91 (2011) 316–322, https://doi.org/10.1016/j.jaap.2011.03.010. [29] E. Antunes, M.V. Jacob, G. Brodie, P.A. Schneider, Microwave pyrolysis of sewage biosolids : dielectric properties, microwave susceptor role and its impact on biochar properties, J. Anal. Appl. Pyrolysis 129 (2018) 93–100, https://doi.org/10.1016/j.jaap.2017.11.023. [30] A. Cross, S.P. Sohi, A method for screening the relative long-term stability of biochar, Gcb Bioenergy 5 (2013) 215–220, https://doi.org/10.1111/gcbb.12035. [31] A.V. Mcbeath, R.J. Smernik, M.P.W. Schneider, M.W.I. Schmidt, E.L. Plant, Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR, Org. Geochem. 42 (2011) 1194–1202, https://doi.org/10.1016/j.orggeochem.2011.08.008. [32] J. Mao, K. Schmidt-rohr, G. Davies, E.A. Ghabbour, quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance, Soil Sci. 64 (2000) 873–884, https://doi.org/10.2136/sssaj2000.643873x. [33] V.L. Budarin, P.S. Shuttleworth, M. De, T.J. Farmer, M.J. Gronnow, L. Pfaltzgraff, D.J. Macquarrie, J.H. Clark, The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes, Catal. Today 239 (2015) 80–89, https://doi.org/10.1016/j.cattod.2013.11.058. [34] P. Shuttleworth, V. Budarin, M. Gronnow, J.H. Clark, R. Luque, Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks, J. Nat. Gas Chem. 21 (2012) 270–274, https://doi.org/10.1016/S1003-9953(11)60364-2. [35] M. Ondrej, V. Budarin, M. Gronnow, K. Crombie, P. Brownsort, E. Fitzpatrick, P. Hurst, Microwave and slow pyrolysis biochar — comparison of physical and functional properties, J. Anal. Appl. Pyrolysis 100 (2013) 41–48, https://doi.org/10.1016/j.jaap.2012.11.015. [36] Z. Hu, X. Ma, C. Chen, A study on experimental characteristic of microwave-assisted pyrolysis of microalgae, Bioresour. Technol. 107 (2012) 487–493, https://doi.org/10.1016/j.biortech.2011.12.095. [37] X. Zhao, Z. Song, H. Liu, Z. Li, L. Li, C. Ma, Microwave pyrolysis of corn stalk bale : a promising method for direct utilization of large-sized biomass and syngas production, J. Anal. Appl. Pyrolysis 89 (2010) 87–94, https://doi.org/10.1016/j.jaap.2010.06.001. [38] K.Y. Foo, B.H. Hameed, Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation, Chem. Eng. J. 180 (2012) 66–74, https://doi.org/10.1016/j.cej.2011.11.002. [39] D.W. McKee, Mechanisms of the alkali metal catalysed gasification of carbon, Fuel. 62 (1983) 170–175, https://doi.org/10.1016/0016-2361(83)90192-8. [40] K.Y. Foo, B.H. Hameed, Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating, Bioresour. Technol. 111 (2012) 425–432, https://doi.org/10.1016/j.biortech.2012.01.141. [41] X. Zhang, K. Rajagopalan, H. Lei, An overview of a novel concept in biomass pyrolysis : microwave irradiation, Sustain. Energy Fuels. 1 (2017) 1664–1699, https://doi.org/10.1039/c7se00254h. [42] K.Y. Foo, B.H. Hameed, Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation, Bioresour. Technol. 104 (2012) 679–686, https://doi.org/10.1016/j.biortech.2011.10.005. [43] D.J. Macquarrie, J.H. Clark, E. Fitzpatrick, The microwave pyrolysis of biomass, Biofuels, Bioprod. Biorefining 6 (2012) 549–560, https://doi.org/10.1002/bbb. [44] A.V. Mcbeath, R.J. Smernik, Variation in the degree of aromatic condensation of chars, Org. Geochem. 40 (2009) 1161–1168, https://doi.org/10.1016/j.orggeochem.2009.09.006. [45] N.G. Evans, M.G. Hamlyn, Alkali metal and alkali earth carbonates at microwave frequencies, I : dielectric properties, J. Microw. Power Electromagn. Energy 33 (1998) 24–26, https://doi.org/10.1080/08327823.1998.11688355. [46] G. Müller, C. Schöpper, H. Vos, A. Kharazipour, A. Polle, FTIR-ATR spectroscopic analyses of changes in wood properties during particle- and fibreboard production of hardand softwood trees, Bioresources. 4 (2009) 49–71, https://doi.org/10. 15376/biores.4.1.49-71. [47] M. Fan, D. Dai, B. Huang, Fourier Transform Infrared Spectroscopy for Natural Fibres, in: S. Salih (Ed.), Fourier Transform - Materials Analysis, Intech, Rijeka, 2012, pp. 45–67, , https://doi.org/10.5772/35482. [48] C.G. Boeriu, D. Bravo, R.J.A. Gosselink, J.E.G. Van Dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy, Ind. Crops Prod. 20 (2004) 205–218, https://doi.org/10.1016/j.indcrop.2004.04.022. [49] Y. Cai, H. Qi, Y. Liu, X. He, Sorption/Desorption behavior and mechanism of NH4+ by Biochar as a nitrogen fertilizer sustained-release material, J. Agric. Food Chem.4 (2016) 4958–4964, https://doi.org/10.1021/acs.jafc.6b00109. [50] Y. Liu, Z. He, M. Uchimiya, Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy, Mod. Appl. Sci. 9 (2015) 246–253, https://doi.org/10.5539/mas.v9n4p246. [51] M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, M.H. Gerzabek, FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4 P2O7, and Na2CO3 extraction procedures, J. Plant Nutr. Soil Sci. (1999) 170 (2007) 522–529, https://doi.org/10.1002/jpln.200622082. [52] P. Adriaensens, L. Storme, R. Carleer, J. Gelan, Comparative morphological study of Poly(dioxolane)/Poly(methyl methacrylate) segmented networks and blends by 13C solid-state NMR and thermal analysis, Macromolecules 35 (2002) 3965–3970, https://doi.org/10.1021/ma0117763. [53] B. Ottenbourgs, P. Adriaensens, R. Carleer, D. Vanderzande, J. Gelan, Quantitative carbon-13 solid-state n.m.r. and FT-Raman spectroscopy in novalac resins, Polymer 39 (1998) 5293–5300, https://doi.org/10.1016/S0032-3861(97)10283-X. [54] C.E. Brewer, K. Schmidt-rohr, J.A. Satrio, R.C. Brown, Characterization of biochar from fast pyrolysis and gasification systems, Environ. Prog. Sustain. Energy 28 (2009) 386–396, https://doi.org/10.1002/ep. [55] C.E. Brewer, Y. Hu, K. Schmidt-rohr, T.E. Loynachan, D.A. Laird, R.C. Brown, Extent of pyrolysis impacts on fast pyrolysis biochar properties, J. Environ. Qual. 41 (2012) 1115–1122, https://doi.org/10.2134/jeq2011.0118. [56] A.V. Mcbeath, R.J. Smernik, E.S. Krull, J. Lehmann, The influence of feedstock and production temperature on biochar carbon chemistry : a solid-state 13C NMR study, Biomass Bioenergy 60 (2014) 121–129, https://doi.org/10.1016/j.biombioe.2013.11.002. [57] K. Crombie, O. Masek, S.P. Sohi, P. Brownsort, A. Cross, The effect of pyrolysis conditions on biochar stability as determined by three methods, BioEnergy 5 (2013) 122–131, https://doi.org/10.1111/gcbb.12030. [58] K. Jindo, H. Mizumoto, Y. Sawada, T. Sonoki, Physical and chemical characterization of biochars derived from agricultural residues, Biogeosciences 11 (2014) 6613–6621, https://doi.org/10.5194/bg-11-6613-2014.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jaap.2018.12.027-
dc.identifier.isi000457854800024-
dc.identifier.eissn1873-250X-
local.uhasselt.internationalno-
item.contributorHAELDERMANS, Tom-
item.contributorClaesen, Joyce-
item.contributorMAGGEN, Jens-
item.contributorCARLEER, Robert-
item.contributorYPERMAN, Jan-
item.contributorADRIAENSENS, Peter-
item.contributorSAMYN, Pieter-
item.contributorVANDAMME, Dries-
item.contributorCUYPERS, Ann-
item.contributorVANREPPELEN, Kenny-
item.contributorSCHREURS, Sonja-
item.fullcitationHAELDERMANS, Tom; Claesen, Joyce; MAGGEN, Jens; CARLEER, Robert; YPERMAN, Jan; ADRIAENSENS, Peter; SAMYN, Pieter; VANDAMME, Dries; CUYPERS, Ann; VANREPPELEN, Kenny & SCHREURS, Sonja (2018) Microwave assisted and conventional pyrolysis of MDF – characterization of the produced biochars. In: JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 138, p. 218-230.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn0165-2370-
crisitem.journal.eissn1873-250X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Peer reviewed author version.pdfPeer-reviewed author version1.57 MBAdobe PDFView/Open
Microwave assisted and conventional pyrolysis of MDF – Characterization of the produced biochars.pdf
  Restricted Access
Published version5.32 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.