Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBIRANT, Gizem-
dc.contributor.authorDE WILD, Jessica-
dc.contributor.authorMEURIS, Marc-
dc.contributor.authorPoortmans, Jef-
dc.contributor.authorVERMANG, Bart-
dc.date.accessioned2019-03-28T16:02:33Z-
dc.date.available2019-03-28T16:02:33Z-
dc.date.issued2019-
dc.identifier.citationApplied Sciences-Basel, 9(4) (Art N° 677)-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://hdl.handle.net/1942/27953-
dc.description.abstractThis review summarizes all studies which used dielectric-based materials as a passivation layer at the rear surface of copper indium gallium (di)selenide, Cu(In,Ga)Se2, (CIGS)-based thin film solar cells, up to 2019. The results regarding the kind of dielectric materials, the deposition techniques, contacting approaches, the existence of additional treatments, and current–voltage characteristics (J–V) of passivated devices are emphasized by a detailed table. The techniques used to implement the passivation layer, the contacting approach for the realization of the current flow between rear contact and absorber layer, additional light management techniques if applicable, the solar simulator results, and further characterization techniques, i.e., external quantum efficiency (EQE) and photoluminescence (PL), are shared and discussed. Three graphs show the difference between the reference and passivated devices in terms of open-circuit voltage (Voc), short-circuit current (Jsc), and efficiency (η), with respect to the thicknesses of the absorber layer. The effects of the passivation layer at the rear surface are discussed based on these three graphs. Furthermore, an additional section is dedicated to the theoretical aspects of the passivation mechanism.-
dc.description.sponsorshipThis work received funding from the European Union’s H2020 research and innovation program under grant agreement No. 715027-
dc.language.isoen-
dc.rightsThis is an open-access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited (CC BY 4.0).-
dc.subject.otherCIGS; solar cells; review; passivation-
dc.titleDielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review-
dc.typeJournal Contribution-
dc.identifier.issue4-
dc.identifier.volume9-
local.bibliographicCitation.jcatA1-
dc.description.notesBirant, G (reprint author), Hasselt Univ, Inst Mat Res IMO, Agoralaan Gebouw H, B-3590 Diepenbeek, Belgium. IMOMEC Partner Solliance, Imec Div, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. Energyville, Thor Pk 8320, B-3600 Genk, Belgium. gizem.birant@imec.be; Jessica.deWild@imec.be; Marc.Meuris@imec.be; Jef.Poortmans@imec.be; bart.vermang@imec.be-
dc.relation.referencesFraunhofer Institute for Solar Energy Systems, Photovoltaics Report. 2018. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 16 December 2018). Reinhard, P.; Chirilă, A.; Blösch, P.; Pianezzi, F.; Nishiwaki, S.; Buecheler, S. Review of progress toward 20% efficiency flexible cigs solar cells and manufacturing issues of solar modules. IEEE J. Photovolt. 2013, 3, 572–580. [Google Scholar] [CrossRef] Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 2018, 26, 427–436. [Google Scholar] [CrossRef] Feurer, T.; Reinhard, P.; Avancini, E.; Bissig, B.; Löckinger, J.; Fuchs, P.; Carron, R.; Weiss, T.P.; Perrenoud, J.; Stutterheim, S.; et al. Progress in thin film CIGS photovoltaics—Research and development, manufacturing, and applications. Prog. Photovolt. Res. Appl. 2017, 25, 645–667. [Google Scholar] [CrossRef] Mollica, F.; Goffard, J.; Jubailt, M.; Donsanti, F.; Collin, S.; Cattoni, A.; Lombez, L.; Naghavi, N. Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultra-thin Cu(In, Ga)Se2 solar cells. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 2213–2217. [Google Scholar] Lundberg, O.; Edoff, M.; Stolt, L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 2005, 480–481, 520–525. [Google Scholar] [CrossRef] Mollica, F. Optimization of Ultra-Thin Cu(In,Ga)Se2 Based Solar Cells with Alternative Back-Contacts. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, June 2017. [Google Scholar] Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3—Based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. 2012, 30, 040802. [Google Scholar] [CrossRef] Salomé, P.M.P.; Vermang, B.; Ribeiro-Andrade, R.; Teixeira, J.P.; Cunha, J.M.V.; Mendes, M.L.; Haque, S.; Borme, J.; Águas, H.; Fortunato, E.; et al. Passivation of interfaces in thin film solar cells: Understanding the effects of a nanostructured rear point contact layer. Adv. Mater. Interfaces 2018, 5, 1701101. [Google Scholar] [CrossRef] Joel, J. Characterization of Al2O3 as CIGS Surface Passivation Layer in High-Efficiency CIGS Solar Cells. Ph.D. Thesis, Uppsala Universitet, Uppsala, Sweden, July 2014. [Google Scholar] Casper, P.; Hünig, R.; Gomard, G.; Kiowski, O.; Reitz, C.; Lemmer, U.; Powalla, M.; Hetterich, M. Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer. Phys. Status Solidi RRL 2016, 10, 376–380. [Google Scholar] [CrossRef] Vermang, B.; Fjällström, V.; Pettersson, J.; Salomé, P.; Edoff, M. Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contact. Sol. Energy Mater. Sol. Cells 2013, 117, 505–511. [Google Scholar] [CrossRef] Vermang, B.; Fjallstrom, V.; Gao, X.; Edoff, M. Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts. IEEE J. Photovolt. 2014, 4, 486–492. [Google Scholar] [CrossRef] Vermang, B.; Wätjen, J.T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Kotipalli, R.; Henry, F.; Flandre, D. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 2014, 22, 1023–1029. [Google Scholar] [CrossRef] Vermang, B.; Wätjen, J.T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Kotipalli, R.; Henry, F.; Flandre, D. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2015, 582, 300–303. [Google Scholar] [CrossRef] Choi, S.; Kamikawa, Y.; Nishinaga, J.; Yamada, A.; Shibata, H.; Niki, S. Lithographic fabrication of point contact with Al2O3 rear-surface-passivated and ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2018, 665, 91–95. [Google Scholar] [CrossRef] Ledinek, D.; Salome, P.; Hagglund, C.; Zimmermann, U.; Edoff, M. Rear Contact Passivation for High Bandgap Cu(In, Ga)Se2 Solar Cells with a Flat Ga profile. IEEE J. Photovolt. 2018, 8, 1–7. [Google Scholar] [CrossRef] Vermang, B.; Wätjen, J.T.; Frisk, C.; Fjällström, V.; Rostvall, F.; Edoff, M.; Salomé, P.; Borme, J.; Nicoara, N. Introduction of Si PERC rear contacting design to boost efficiency of Cu(In,Ga)Se2 solar cells. IEEE J. Photovolt. 2014, 4, 1644–1649. [Google Scholar] [CrossRef] Yin, G.; Knight, M.W.; Lare, M.-C.v.; Garcia, M.M.S.; Polman, A.; Schmid, M. Optoelectronic Enhancement of Ultrathin CuIn1-xGaxSe2 Solar Cells by Nanophotonic Contacts. Adv. Opt. Mater. 2017, 5, 1–11. [Google Scholar] Lare, M.-C.v.; Yin, G.; Polman, A.; Schmid, M. Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns. ACS Nano 2015, 9, 9603–9613. [Google Scholar] [CrossRef] [PubMed] Vermang, B.; Rostvall, F.; Fjällström, V.; Edoff, M. Potential-induced optimization of ultra-thin rear surface passivated CIGS solar cells. Phys. Status Solidi RRL 2014, 8, 908–911. [Google Scholar] [CrossRef][Green Version] Yin, G.; Knight, M.W.; Lare, M.-C.v.; Garcia, M.M.S.; Polman, A.; Schmid, M. Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se2 Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 31646–31652. [Google Scholar] [CrossRef] Bose, S.; Cunha, J.M.V.; Suresh, S.; Wild, J.D.; Lopes, T.S.; Barbosa, J.R.S.; Silva, R.; Borme, J.; Fernanaes, P.A.; Vermang, B.; et al. Optical Lithography Patterning of SiO2 Layers for Interface Passivation of Thin Film Solar Cells. Sol. RRL 2018, 2, 1800212. [Google Scholar] [CrossRef] Ledinek, D.; Donzel-Gargand, O.; Sköld, M.; Keller, J.; Edoff, M. Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers. Sol. Energy Mater. Sol. Cells 2018, 187, 160–169. [Google Scholar] [CrossRef] Suresh, S.; Wild, J.D.; Kohl, T.; Buldu, D.G.; Brammertz, G.; Meuris, M.; Poortmans, J.; Isabella, O.; Zeman, M.; Vermang, B. A study to improve light confinement and rear-surface passivation in a thin Cu(In,Ga)Se2 solar cell. Thin Solid Films 2018, 669, 399–403. [Google Scholar] [CrossRef] Vermang, B.; Goverde, H.; Tous, L.; Lorenz, A.; Choulat, P.; Horzel, J.; John, J.; Poortmans, J.; Mertens, R. Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%. Prog. Photovolt. Res. Appl. 2012, 20, 269–273. [Google Scholar] [CrossRef] Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D. Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface. AIP Adv. 2015, 5, 107101. [Google Scholar] [CrossRef] Keller, J.; Chen, W.-C.; Riekehr, L.; Kubart, T.; Törndahl, T.; Edoff, M. Bifacial Cu(In,Ga)Se2 solar cells using hydrogen-doped In2O3 films as a transparent back contact. Prog. Photovolt. Res. Appl. 2018, 26, 846–858. [Google Scholar] [CrossRef] Ohm, W.; Riedel, W.; Aksünger, U.; Greiner, D.; Kaufmann, C.A.; Lux-Steiner, M.C.; Gledhill, S. Bifacial Cu(In,Ga)Se2 solar cells with submicron absorber thickness: Back-contact passivation and light management. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–5. [Google Scholar] Edoff, M.; Joel, J.; Vermang, B.; Hagglund, C. Back contact passivation effects in Bi-facial thin CIGS solar cells. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 3527–3530. [Google Scholar] Titova, V.; Veith-Wolf, B.; Startsev, D.; Schmidt, J. Effective passivation of crystalline silicon surfaces by ultrathin atomic-layer-deposited TiOx layers. Energy Procedia 2017, 124, 441–447. [Google Scholar] [CrossRef] Zhang, X.-Y.; Hsu, C.-H.; Lien, S.-Y.; Chen, S.-Y.; Huang, W.; Yang, C.-H.; Kung, C.-Y.; Zhu, W.-Z.; Xiong, F.-B.; Meng, X.-G. Surface passivation of silicon using hfo2 thin films deposited by remote plasma atomic layer deposition system. Nanoscale Res. Lett. 2017, 12, 324. [Google Scholar] [CrossRef] [PubMed]-
local.type.refereedRefereed-
local.type.specifiedReview-
local.bibliographicCitation.artnr677-
local.type.programmeH2020-
local.relation.h2020715027-
dc.identifier.doi10.3390/app9040677-
dc.identifier.isi000460696500063-
item.fullcitationBIRANT, Gizem; DE WILD, Jessica; MEURIS, Marc; Poortmans, Jef & VERMANG, Bart (2019) Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review. In: Applied Sciences-Basel, 9(4) (Art N° 677).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2020-
item.contributorBIRANT, Gizem-
item.contributorDE WILD, Jessica-
item.contributorMEURIS, Marc-
item.contributorPoortmans, Jef-
item.contributorVERMANG, Bart-
crisitem.journal.issn2076-3417-
crisitem.journal.eissn2076-3417-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Dielectric-Based Rear Surface Passivation Approaches for CIGS solar cells-A review.pdfPublished version1.14 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

16
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

48
checked on Aug 29, 2024

Page view(s)

218
checked on Sep 5, 2022

Download(s)

168
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.