Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJANSSENS, Gerrit K.-
dc.contributor.authorSorensen, K-
dc.contributor.authorLIMERE, Arthur-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2007-11-16T12:36:19Z-
dc.date.available2007-11-16T12:36:19Z-
dc.date.issued2005-
dc.identifier.citationADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS. p. 234-239-
dc.identifier.isbn978-3-540-26076-9-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/2809-
dc.description.abstractThis paper investigates why some companies grow faster than others, by data mining a survey of a large number of companies in Flanders (the northern part of Belgium). Faster or slower average growth over a time period is explained by building a classification tree containing several categorical variables (both quantitative and qualitative). The technique used - called genAID - splits the population at different levels. It is inspired by the Automatic Interaction Detector (AID) technique to find trees that explain the variability in average growth but uses a genetic algorithm to overcome some of the drawbacks of AID. Classical AID or other tree-growing techniques usually generate a single tree for interpretation. This approach has been criticized because, due to the artifacts of data, spurious interactions may occur. genAID offers the user-analyst a set of trees, which are the best ones found over a number of generations of the genetic algorithm. The user-analyst is then offered the choice of choosing a tree by trading off explanatory power against either the ease of understanding or the conformity with an existing theory.-
dc.language.isoen-
dc.publisherSPRINGER-VERLAG BERLIN-
dc.relation.ispartofseriesLECTURE NOTES IN ARTIFICIAL INTELLIGENCE-
dc.titleAnalysis of company growth data using genetic algorithms on binary trees-
dc.typeJournal Contribution-
local.bibliographicCitation.conferencenameADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING-
dc.identifier.epage239-
dc.identifier.spage234-
local.format.pages6-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Limburg Ctr, Fac Appl Econ, Data Anal & Modelling Res Grp, B-3590 Diepenbeek, Belgium. Univ Antwerp, Fac Appl Econ, B-2000 Antwerp, Belgium. Limburgs Univ Ctr, Fac Appl Econ, Financial Management Res Grp, B-3560 Diepenbeek, Belgium.Janssens, GK, Univ Limburg Ctr, Fac Appl Econ, Data Anal & Modelling Res Grp, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.relation.ispartofseriesnr3518-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/11430919_29-
dc.identifier.isi000229956700028-
item.validationecoom 2006-
item.contributorJANSSENS, Gerrit K.-
item.contributorSorensen, K-
item.contributorLIMERE, Arthur-
item.contributorVANHOOF, Koen-
item.fullcitationJANSSENS, Gerrit K.; Sorensen, K; LIMERE, Arthur & VANHOOF, Koen (2005) Analysis of company growth data using genetic algorithms on binary trees. In: ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS. p. 234-239.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0302-9743-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.