Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBELMANS, Niels-
dc.contributor.authorGilles, Liese-
dc.contributor.authorVirag, Piroska-
dc.contributor.authorHedesiu, Mihaela-
dc.contributor.authorSalmon, Benjamin-
dc.contributor.authorBaatout, Sarah-
dc.contributor.authorLucas, Stéphane-
dc.contributor.authorJacobs, Reinhilde-
dc.contributor.authorLAMBRICHTS, Ivo-
dc.contributor.authorMOREELS, Marjan-
dc.date.accessioned2019-05-02T10:30:43Z-
dc.date.available2019-05-02T10:30:43Z-
dc.date.issued2019-
dc.identifier.citationDENTOMAXILLOFACIAL RADIOLOGY, 48 (6)-
dc.identifier.issn0250-832X-
dc.identifier.urihttp://hdl.handle.net/1942/28106-
dc.description.abstractOBJECTIVES:: Cone-beam CT (CBCT) is a medical imaging technique used in dental medicine. However, there are no conclusive data available indicating that exposure to X-ray doses used by CBCT are harmless. We aim, for the first time, to characterize the potential age-dependent cellular and subcellular effects related to exposure to CBCT imaging. Current objective is to describe and validate the protocol for characterization of cellular and subcellular changes after diagnostic CBCT. METHODS:: Development and validation of a dedicated two-part protocol: 1) assessing DNA double strand breaks (DSBs) in buccal mucosal (BM) cells and 2) oxidative stress measurements in saliva samples. BM cells and saliva samples are collected prior to and 0.5 h after CBCT examination. BM cells are also collected 24 h after CBCT examination. DNA DSBs are monitored in BM cells via immunocytochemical staining for γH2AX and 53BP1. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and total antioxidant capacity are measured in saliva to assess oxidative damage. RESULTS:: Validation experiments show that sufficient BM cells are collected (97.1 ± 1.4 %) and that γH2AX/53BP1 foci can be detected before and after CBCT examination. Collection and analysis of saliva samples, either sham exposed or exposed to IR, show that changes in 8-oxo-dG and total antioxidant capacity can be detected in saliva samples after CBCT examination. CONCLUSION:: The DIMITRA Research Group presents a two-part protocol to analyze potential age-related biological differences following CBCT examinations. This protocol was validated for collecting BM cells and saliva and for analyzing these samples for DNA DSBs and oxidative stress markers, respectively.-
dc.description.sponsorshipThe research leading to these results has received funding from the European Atomic Energy Community's Seventh Framework Programme FP7/2007-2011 under grant agreement no 604984 (OPERRA: Open Project for the European Radiation Research Area). The OPERRA consortium had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NB is supported by a UHasselt-SCK.CEN PhD grant.-
dc.language.isoen-
dc.subject.otherBuccal mucosal cells; DNA Double strand breaks; Dental cone-beam CT; Oxidative stress; Saliva-
dc.titleMethod validation to assess in vivo cellular and subcellular changes in buccal mucosa cells and saliva following CBCT examination-
dc.title.alternativeMethod for assessing cellular and subcellular changes following CBCT-
dc.typeJournal Contribution-
dc.identifier.issue6-
dc.identifier.volume48-
local.bibliographicCitation.jcatA1-
dc.description.notesMoreels, M (reprint author), SCK CEN, Radiobiol Unit, Belgian Nucl Res Ctr, Mol, Belgium. mmoreels@sckcen.be-
dc.relation.references1. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol. 1999;28(4):245-8. 2. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. European radiology. 1998;8(9):1558-64. 3. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am. 2008;52(4):707-30, v. 4. Pauwels R. Cone beam CT for dental and maxillofacial imaging: dose matters. Radiation protection dosimetry. 2015;165(1-4):156-61. 5. Dawood A, Patel S, Brown J. Cone beam CT in dental practice. British dental journal. 2009;207(1):23-8. 6. Kapila SD, Nervina JM. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44(1):20140282. 7. Scarfe WC, Farman AG, Levin MD, Gane D, Scarfe WC, Farman AG, et al. Essentials of maxillofacial cone beam computed tomography - Clinical applications of cone-beam computed tomography in dental practice. Alpha Omegan. 2010;103(2):62-7. 8. De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38(6):609-25. 9. Feldkamp LA, Davis LC, Kress JW. Practical Cone-Beam Algorithm. J Opt Soc Am A. 1984;1(6):612-9. 10. Suomalainen A, Pakbaznejad Esmaeili E, Robinson S. Dentomaxillofacial imaging with panoramic views and cone beam CT. Insights Imaging. 2015;6(1):1-16. 11. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World journal of radiology. 2014;6(10):794-807. 12. Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72(1):75-80. 13. UNSCEAR. SOURCES AND EFFECTS OF IONIZING RADIATION. 2000;Volume II: Effects. 14. the UNSCo, Radiation EoA. UNSCEAR 2013 Report: Sources, effects and risks of ionizing radiation. 2013;II Annex B - Effects of radiation exposure of children. 15. Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. Journal of the American Dental Association (1939). 2008;139(9):1237-43. 16. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. European journal of radiology. 2012;81(2):267-71. 17. Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B, et al. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol. 2017. 18. Marcu M, Hedesiu M, Salmon B, Pauwels R, Stratis A, Oenning ACC, et al. Estimation of the radiation dose for pediatric CBCT indications: a prospective study on ProMax3D. Int J Paediatr Dent. 2018. 19. Signorelli L, Patcas R, Peltomaki T, Schatzle M. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie. 2016;77(1):9-15. 20. Li G. Patient radiation dose and protection from cone-beam computed tomography. Imaging Sci Dent. 2013;43(2):63-9. 21. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. European journal of radiology. 2009;71(3):461-8. 22. Centre for Radiation CaEH. Guidance on the safe use of dental cone bean CT (computed tomography) equipment. Oxfordshire: Health Protection Agency; 2010. 23. Theodorakou C, Walker A, Horner K, Pauwels R, Bogaerts R, Jacobs R. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol. 2012;85(1010):153-60. 24. Department of Public Health EaSDoHP-F, Women and Children’s Health Cluster (FWC). Communicating radiation risks in paediatric imaging - Information to support healthcare discussions about benefit and risk. Switserland: World Health Organization; 2016. 25. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277-84. 26. RadiologyInfo.org. Radiation Dose in X-ray and CT exams. Accessed on 2018-12-06. Available from: https://www.radiologyinfo.org/en/pdf/safety-xray.pdf. 27. Bogdanich W. CMJ. Radiation Worries for Children in Dentists’ Chairs. New York Times. 2010. 28. Brenner DJ. Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol. 2002;32(4):228-1; discussion 42-4. 29. Hall EJ. Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol. 2002;32(10):700-6. 30. Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345-51. 31. UNSCEAR. SOURCES AND EFFECTS OF IONIZING RADIATION: UNSCEAR 2008 Report. New York: United Nations; 2010. 32. Holmberg O, Czarwinski R, Mettler F. The importance and unique aspects of radiation protection in medicine. European journal of radiology. 2010;76(1):6-10. 33. D. K. Maurya TPAD. Role of Radioprotectors in the Inhibition of DNA Damage and Modulation of DNA Repair After Exposure to Gamma-Radiation. In: Chen CC, editor. Selected Topics in DNA Repair: InTech.; 2011. 34. Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000. 2007;43:160-232. 35. Tothova L, Kamodyova N, Cervenka T, Celec P. Salivary markers of oxidative stress in oral diseases. Front Cell Infect Microbiol. 2015;5:73. 36. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17(10):1195-214. 37. Kasai H, Nishimura S. Hydroxylation of deoxy guanosine at the C-8 position by polyphenols and aminophenols in the presence of hydrogen peroxide and ferric ion. Gan. 1984;75(7):565-6. 38. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell cycle (Georgetown, Tex). 2010;9(4):662-9. 39. Dugle DL, Gillespie CJ, Chapman JD. DNA strand breaks, repair, and survival in x-irradiated mammalian cells. Proc Natl Acad Sci U S A. 1976;73(3):809-12. 40. Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res. 1998;150(5 Suppl):S42-51. 41. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23(5):687-96. 42. Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 2000;405(6787):697-700. 43. Vamvakas S, Vock EH, Lutz WK. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol. 1997;27(2):155-74. 44. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247-54. 45. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36(17):5678-94. 46. Riches LC, Lynch AM, Gooderham NJ. Early events in the mammalian response to DNA double-strand breaks. Mutagenesis. 2008;23(5):331-9. 47. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179-204. 48. Torres-Bugarin O, Zavala-Cerna MG, Nava A, Flores-Garcia A, Ramos-Ibarra ML. Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. Dis Markers. 2014;2014:956835. 49. Spivack SD, Hurteau GJ, Jain R, Kumar SV, Aldous KM, Gierthy JF, et al. Gene-environment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells. Cancer Res. 2004;64(18):6805-13. 50. Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, et al. Buccal micronucleus cytome assay. Nat Protoc. 2009;4(6):825-37. 51. Siddiqui MS, Francois M, Fenech MF, Leifert WR. gammaH2AX responses in human buccal cells exposed to ionizing radiation. Cytometry A. 2015;87(4):296-308. 52. Sarto F, Tomanin R, Giacomelli L, Iannini G, Cupiraggi AR. The micronucleus assay in human exfoliated cells of the nose and mouth: application to occupational exposures to chromic acid and ethylene oxide. Mutat Res. 1990;244(4):345-51. 53. Lee JM, Garon E, Wong DT. Salivary diagnostics. Orthod Craniofac Res. 2009;12(3):206-11. 54. Mandel ID. Salivary diagnosis: more than a lick and a promise. Journal of the American Dental Association (1939). 1993;124(1):85-7. 55. Miller SM. Saliva testing--a nontraditional diagnostic tool. Clin Lab Sci. 1994;7(1):39-44. 56. Dame ZT, Aziat F, Mandal R, Krishnamurthy R, Bouatra S, Borzouie S, et al. The human saliva metabolome. Metabolomics. 2015;11(6):1864-83. 57. ICRP. Recommendations of the ICRP. ICRP Publication 26. 1977(Ann. ICRP 1 (3)). 58. ICRP. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. 1991(Ann. ICRP 21 (1-3). 59. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. 2007(Ann. ICRP 37 (2-4)). 60. Stratis A. Customized Monte Carlo Modelling for Paediatric Patient Dosimetry in Dental and Maxillofacial Cone Beam Computed Tomography Imaging [Doctoral Thesis]. Leuven University Press: KU Leuven; 2018. 61. Virag P, Hedesiu M, Soritau O, Perde-Schrepler M, Brie I, Pall E, et al. Low-dose radiations derived from cone-beam CT induce transient DNA damage and persistent inflammatory reactions in stem cells from deciduous teeth. Dentomaxillofac Radiol. 2018:20170462. 62. Suetens A, Konings K, Moreels M, Quintens R, Verslegers M, Soors E, et al. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells. Front Oncol. 2016;6:87. 63. Ghardi M, Moreels M, Chatelain B, Chatelain C, Baatout S. Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells. Int J Mol Med. 2012;29(5):769-80. 64. Baselet B, Belmans N, Coninx E, Lowe D, Janssen A, Michaux A, et al. Functional Gene Analysis Reveals Cell Cycle Changes and Inflammation in Endothelial Cells Irradiated with a Single X-ray Dose. Front Pharmacol. 2017;8:213. 65. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-82. 66. De Vos WH, Van Neste L, Dieriks B, Joss GH, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytometry A. 2010;77(1):64-75. 67. Munro CL, Grap MJ, Jablonski R, Boyle A. Oral health measurement in nursing research: state of the science. Biol Res Nurs. 2006;8(1):35-42. 68. Shakeri Manesh S, Sangsuwan T, Pour Khavari A, Fotouhi A, Emami SN, Haghdoost S. MTH1, an 8-oxo-2'-deoxyguanosine triphosphatase, and MYH, a DNA glycosylase, cooperate to inhibit mutations induced by chronic exposure to oxidative stress of ionising radiation. Mutagenesis. 2017;32(3):389-96. 69. Haghdoost S, Czene S, Naslund I, Skog S, Harms-Ringdahl M. Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic Res. 2005;39(2):153-62. 70. Vandevoorde C, Gomolka M, Roessler U, Samaga D, Lindholm C, Fernet M, et al. EPI-CT: in vitro assessment of the applicability of the gamma-H2AX-foci assay as cellular biomarker for exposure in a multicentre study of children in diagnostic radiology. Int J Radiat Biol. 2015;91(8):653-63. 71. El-Saghire H, Thierens H, Monsieurs P, Michaux A, Vandevoorde C, Baatout S. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol. 2013;89(8):628-38. 72. Sudprasert W, Navasumrit P, Ruchirawat M. Effects of low-dose gamma radiation on DNA damage, chromosomal aberration and expression of repair genes in human blood cells. Int J Hyg Environ Health. 2006;209(6):503-11. 73. Ponzinibbio MV, Crudeli C, Peral-Garcia P, Seoane A. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells. Acta Radiol. 2010;51(9):1028-33. 74. Das Roy L, Giri S, Singh S, Giri A. Effects of radiation and vitamin C treatment on metronidazole genotoxicity in mice. Mutat Res. 2013;753(2):65-71. 75. Ainsbury EA, Al-Hafidh J, Bajinskis A, Barnard S, Barquinero JF, Beinke C, et al. Inter- and intra-laboratory comparison of a multibiodosimetric approach to triage in a simulated, large scale radiation emergency. Int J Radiat Biol. 2014;90(2):193-202. 76. Sangsuwan T, Haghdoost S. The nucleotide pool, a target for low-dose gamma-ray-induced oxidative stress. Radiat Res. 2008;170(6):776-83. 77. Tsuzuki T, Nakatsu Y, Nakabeppu Y. Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis. Cancer Sci. 2007;98(4):465-70. 78. Magnander K, Elmroth K. Biological consequences of formation and repair of complex DNA damage. Cancer letters. 2012;327(1-2):90-6. 79. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011;711(1-2):193-201. 80. Gonzalez JE, Roch-Lefevre SH, Mandina T, Garcia O, Roy L. Induction of gamma-H2AX foci in human exfoliated buccal cells after in vitro exposure to ionising radiation. Int J Radiat Biol. 2010;86(9):752-9. 81. Vandevoorde C, Vral A, Vandekerckhove B, Philippe J, Thierens H. Radiation Sensitivity of Human CD34(+) Cells Versus Peripheral Blood T Lymphocytes of Newborns and Adults: DNA Repair and Mutagenic Effects. Radiat Res. 2016;185(6):580-90. 82. Deminice R, Sicchieri T, Payao PO, Jordao AA. Blood and salivary oxidative stress biomarkers following an acute session of resistance exercise in humans. Int J Sports Med. 2010;31(9):599-603. 83. da Fonte JBM, de Andrade TM, Albuquerque RLC, de Melo MDB, Takeshita WM. Evidence of genotoxicity and cytotoxicity of X-rays in the oral mucosa epithelium of adults subjected to cone beam CT. Dentomaxillofac Rad. 2018;47(2). 84. de Geus JL, Wambier LM, Bortoluzzi MC, Loguercio AD, Kossatz S, Reis A. Does smoking habit increase the micronuclei frequency in the oral mucosa of adults compared to non-smokers? A systematic review and meta-analysis. Clin Oral Investig. 2018;22(1):81-91.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr20180428-
dc.identifier.doi10.1259/dmfr.20180428-
dc.identifier.isi000482211000010-
item.fullcitationBELMANS, Niels; Gilles, Liese; Virag, Piroska; Hedesiu, Mihaela; Salmon, Benjamin; Baatout, Sarah; Lucas, Stéphane; Jacobs, Reinhilde; LAMBRICHTS, Ivo & MOREELS, Marjan (2019) Method validation to assess in vivo cellular and subcellular changes in buccal mucosa cells and saliva following CBCT examination. In: DENTOMAXILLOFACIAL RADIOLOGY, 48 (6).-
item.contributorBELMANS, Niels-
item.contributorGilles, Liese-
item.contributorVirag, Piroska-
item.contributorHedesiu, Mihaela-
item.contributorSalmon, Benjamin-
item.contributorBaatout, Sarah-
item.contributorLucas, Stéphane-
item.contributorJacobs, Reinhilde-
item.contributorLAMBRICHTS, Ivo-
item.contributorMOREELS, Marjan-
item.validationecoom 2020-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn0250-832X-
crisitem.journal.eissn1476-542X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Belmans-Moreels_Revised Manuscript.pdfPeer-reviewed author version623.27 kBAdobe PDFView/Open
Method validation to assess in vivo cellular and subcellular changes following CBCT examinations.pdf
  Restricted Access
Published version433.87 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

6
checked on Sep 20, 2024

Page view(s)

58
checked on Aug 31, 2022

Download(s)

84
checked on Aug 31, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.