Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28164
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOGIE, Jeroen-
dc.contributor.authorHOEKS, Cindy-
dc.contributor.authorSCHEPERS, Melissa-
dc.contributor.authorTIANE, Assia-
dc.contributor.authorCUYPERS, Ann-
dc.contributor.authorLeijten, Frank-
dc.contributor.authorChintapakorn, Yupyn-
dc.contributor.authorSuttiyut, Thiti-
dc.contributor.authorPornpakakul, Surachai-
dc.contributor.authorStruik, Dicky-
dc.contributor.authorKerksiek, Anja-
dc.contributor.authorLiu, Hong-Bing-
dc.contributor.authorHELLINGS, Niels-
dc.contributor.authorMartinez-Martinez, Pilar-
dc.contributor.authorJonker, Johan W.-
dc.contributor.authorDEWACHTER, Ilse-
dc.contributor.authorSijbrands, Eric-
dc.contributor.authorWalter, Jochen-
dc.contributor.authorHENDRIKS, Jerome-
dc.contributor.authorGroen, Albert-
dc.contributor.authorStaels, Bart-
dc.contributor.authorLutjohann, Dieter-
dc.contributor.authorVANMIERLO, Tim-
dc.contributor.authorMulder, Monique-
dc.date.accessioned2019-05-07T11:52:48Z-
dc.date.available2019-05-07T11:52:48Z-
dc.date.issued2019-
dc.identifier.citationScientific reports (Nature Publishing Group), 9 (Art N° 4908)-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/1942/28164-
dc.description.abstractActivation of liver X receptors (LXRs) by synthetic agonists was found to improve cognition in Alzheimer’s disease (AD) mice. However, these LXR agonists induce hypertriglyceridemia and hepatic steatosis, hampering their use in the clinic. We hypothesized that phytosterols as LXR agonists enhance cognition in AD without affecting plasma and hepatic triglycerides. Phytosterols previously reported to activate LXRs were tested in a luciferase-based LXR reporter assay. Using this assay, we found that phytosterols commonly present in a Western type diet in physiological concentrations do not activate LXRs. However, a lipid extract of the 24(S)-Saringosterol-containing seaweed Sargassum fusiforme did potently activate LXRβ. Dietary supplementation of crude Sargassum fusiforme or a Sargassum fusiforme-derived lipid extract to AD mice significantly improved short-term memory and reduced hippocampal Aβ plaque load by 81%. Notably, none of the side effects typically induced by full synthetic LXR agonists were observed. In contrast, administration of the synthetic LXRα activator, AZ876, did not improve cognition and resulted in the accumulation of lipid droplets in the liver. Administration of Sargassum fusiforme-derived 24(S)-Saringosterol to cultured neurons reduced the secretion of Aβ42. Moreover, conditioned medium from 24(S)-Saringosterol-treated astrocytes added to microglia increased phagocytosis of Aβ. Our data show that Sargassum fusiforme improves cognition and alleviates AD pathology. This may be explained at least partly by 24(S)-Saringosterol-mediated LXRβ activation.-
dc.description.sponsorshipThis work was supported by the Internationale Stichting Alzheimer Onderzoek (ISAO)/Alzheimer Nederland (AN), Scientific Research-Flanders (FWO), Fondation Vaincre Alzheimer (LECMA), and Alzheimer Forschung Initiative (AFI). The authors like to thank Joke Vanhoof for excellent technical assistance and AstraZeneca for providing the AZ876 compound through the AstraZeneca Open Innovation program. We sincerely thank Patric Delhanty for editing the paper and Kenneth Vanbrabant for performing the GC-MS analysis.-
dc.language.isoen-
dc.rightsOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.-
dc.titleDietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model-
dc.typeJournal Contribution-
dc.identifier.volume9-
local.bibliographicCitation.jcatA1-
dc.description.notesVanmierlo, T (reprint author), Hasselt Univ, Biomed Res Inst, Dept Immunol & Biochem, Martelarenlaan 42, B-3500 Hasselt, Belgium. Maastricht Univ, Sch Mental Hlth & Neurosci, Univ Singel 50, NL-6229 ER Maastricht, Netherlands. tim.vanmierlo@uhasselt.be-
dc.relation.references1. Parihar, M. S. & Hemnani, T. Alzheimer’s disease pathogenesis and therapeutic interventions. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia 11, 456–467, https://doi.org/10.1016/j.jocn.2003.12.007 (2004). 2. Jansen, D. et al. Cholesterol and synaptic compensatory mechanisms in Alzheimer’s disease mice brain during aging. Journal of Alzheimer’s disease: JAD 31, 813–826, https://doi.org/10.3233/jad-2012-120298 (2012). 3. Jones, L. et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PloS one 5, e13950, https://doi.org/10.1371/journal.pone.0013950 (2010). 4. Kolsch, H. et al. Alterations of cholesterol precursor levels in Alzheimer’s disease. Biochim Biophys Acta 1801, 945–950, https://doi. org/10.1016/j.bbalip.2010.03.001 (2010). 5. Kolsch, H. et al. Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett 368, 303–308, https:// doi.org/10.1016/j.neulet.2004.07.031 (2004). 6. Mulder, M. Sterols in the central nervous system. Current opinion in clinical nutrition and metabolic care 12, 152–158, https://doi. org/10.1097/MCO.0b013e32832182da (2009). 7. Popp, J. et al. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J Neurochem 123, 310–316, https://doi.org/10.1111/j.1471-4159.2012.07893.x (2012). 8. Shobab, L. A., Hsiung, G. Y. & Feldman, H. H. Cholesterol in Alzheimer’s disease. The Lancet. Neurology 4, 841–852, https://doi. org/10.1016/s1474-4422(05)70248-9 (2005). 9. Stefani, M. & Liguri, G. Cholesterol in Alzheimer’s disease: unresolved questions. Current Alzheimer research 6, 15–29 (2009). 10. Vanmierlo, T. et al. Alterations in brain cholesterol metabolism in the APPSLxPS1mut mouse, a model for Alzheimer’s disease. Journal of Alzheimer’s disease: JAD 19, 117–127, https://doi.org/10.3233/JAD-2010-1209 (2010). 11. Vanmierlo, T. et al. Plant sterols: friend or foe in CNS disorders? Progress in Lipid Research, https://doi.org/10.1016/j. plipres.2015.01.003 (2015). 12. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA 98, 5856–5861, https://doi.org/10.1073/pnas.081620098 (2001). 13. Jiang, Q. et al. ApoE Promotes the Proteolytic Degradation of Aβ. Neuron 58, 681–693, https://doi.org/10.1016/j.neuron.2008.04.010 (2008). 14. Vanmierlo, T. et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiology of aging 32, 1262–1272, https://doi.org/10.1016/j.neurobiolaging.2009.07.005 (2011). 15. Baez-Becerra, C. et al. Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity research 33, 569–579, https://doi.org/10.1007/s12640-017-9845-3 (2018). 16. Lei, C. et al. Amelioration of amyloid beta-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-kappaB signaling and NLRP3 inflammasome. Neuroscience 360, 48–60, https://doi.org/10.1016/j. neuroscience.2017.07.053 (2017). 17. Stachel, S. J. et al. Identification and in Vivo Evaluation of Liver X Receptor beta-Selective Agonists for the Potential Treatment of Alzheimer’s Disease. Journal of medicinal chemistry 59, 3489–3498, https://doi.org/10.1021/acs.jmedchem.6b00176 (2016). 18. Sandoval-Hernandez, A. G. et al. Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis- Related Genes in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Journal of molecular neuroscience: MN 58, 243–253, https://doi.org/10.1007/s12031-015-0665-8 (2016). 19. Zelcer, N. & Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. The Journal of clinical investigation 116, 607–614, https://doi.org/10.1172/jci27883 (2006). 20. Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477, https://doi.org/10.1038/nature07202 (2008). 21. Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nature reviews. Drug discovery 13, 433–444, https://doi.org/10.1038/nrd4280 (2014). 22. Nelissen, K. et al. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. Journal of neuroscience research 90, 60–71, https://doi.org/10.1002/jnr.22743 (2012). 23. Sodhi, R. K. & Singh, N. Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research 72, 45–51, https://doi.org/10.1016/j.phrs.2013.03.008 (2013). 24. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA 104, 10601–10606, https://doi.org/10.1073/pnas.0701096104 (2007). 25. Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Molecular and Cellular Neuroscience 34, 621–628, https://doi.org/10.1016/j.mcn.2007.01.011 (2007). 26. Vanmierlo, T. et al. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5−/− mice. Plant Foods Hum Nutr 66, 149–156, https://doi.org/10.1007/s11130-011-0219-3 (2011). 27. Grefhorst, A. et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 277, 34182–34190, https://doi.org/10.1074/jbc.M204887200 (2002). 28. Kim, G. H. et al. Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor. The Journal of clinical investigation 125, 183–193, https://doi.org/10.1172/jci73615 (2015). 29. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14, 2819–2830 (2000). 30. Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes & Development 14, 2831–2838, https://doi.org/10.1101/gad.850400 (2000). 31. Fricke, C. B. et al. Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters. The British journal of nutrition 98, 890–899, https://doi.org/10.1017/s0007114507756532 (2007). 32. Jansen, P. J. et al. Dietary plant sterols accumulate in the brain. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1761, 445–453, https://doi.org/10.1016/j.bbalip.2006.03.015 (2006). 33. Vanmierlo, T. et al. Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. J Lipid Res 53, 726–735, https://doi.org/10.1194/jlr.M017244 (2012). 34. Chen, Z. et al. 24(S)-Saringosterol from edible marine seaweed Sargassum fusiforme is a novel selective LXRbeta agonist. J Agric Food Chem 62, 6130–6137, https://doi.org/10.1021/jf500083r (2014). 35. El Kharrassi, Y. et al. Biological activities of Schottenol and Spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial BV2 cells. Biochem Biophys Res Commun 446, 798–804, https://doi.org/10.1016/j.bbrc.2014.02.074 (2014). 36. Hoang, M. H. et al. Fucosterol is a selective liver X receptor modulator that regulates the expression of key genes in cholesterol homeostasis in macrophages, hepatocytes, and intestinal cells. Journal of agricultural and food chemistry 60, 11567–11575, https:// doi.org/10.1021/jf3019084 (2012). 37. Kaneko, E. et al. Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. J Biol Chem 278, 36091–36098, https://doi.org/10.1074/jbc.M304153200 (2003). 38. Plat, J., Nichols, J. A. & Mensink, R. P. Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. Journal of Lipid Research 46, 2468–2476, https://doi.org/10.1194/jlr.M500272-JLR200 (2005). 39. Yang, C. et al. Disruption of cholesterol homeostasis by plant sterols. The Journal of clinical investigation 114, 813–822, https://doi. org/10.1172/jci22186 (2004). 40. Burg, V. K. et al. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci 33, 16072–16087, https://doi.org/10.1523/jneurosci.1506-13.2013 (2013). 41. Koivisto, H. et al. Special lipid-based diets alleviate cognitive deficits in the APPswe/PS1dE9 transgenic mouse model of Alzheimer’s disease independent of brain amyloid deposition. J Nutr Biochem 25, 157–169, https://doi.org/10.1016/j.jnutbio.2013.09.015 (2014). 42. Shi, C. et al. beta-sitosterol inhibits high cholesterol-induced platelet beta-amyloid release. J Bioenerg Biomembr 43, 691–697, https://doi.org/10.1007/s10863-011-9383-2 (2011). 43. McDaniel, A. L. et al. Phytosterol feeding causes toxicity in ABCG5/G8 knockout mice. The American journal of pathology 182, 1131–1138, https://doi.org/10.1016/j.ajpath.2012.12.014 (2013). 44. Plat, J. et al. Protective role of plant sterol and stanol esters in liver inflammation: insights from mice and humans. PloS one 9, e110758, https://doi.org/10.1371/journal.pone.0110758 (2014). 45. Cheng, Z. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Molecular biology reports 39, 9493–9508, https://doi.org/10.1007/s11033-012-1814-6 (2012). 46. Sudhamalla, B., Gokara, M., Ahalawat, N., Amooru, D. G. & Subramanyam, R. Molecular dynamics simulation and binding studies of beta-sitosterol with human serum albumin and its biological relevance. The journal of physical chemistry. B 114, 9054–9062, https://doi.org/10.1021/jp102730p (2010). 47. Jankowsky, J. L. et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular Engineering 17, 157–165, https://doi.org/10.1016/S1389-0344(01)00067-3 (2001). 48. Garcia-Alloza, M. et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiology of Disease 24, 516–524, https://doi.org/10.1016/j.nbd.2006.08.017 (2006). 49. Minkeviciene, R. et al. Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. Journal of Neurochemistry 105, 584–594, https://doi.org/10.1111/j.1471-4159.2007.05147.x (2008). 50. Hooijmans, C. R. et al. DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiology of disease 33, 482–498, https://doi.org/10.1016/j.nbd.2008.12.002 (2009). 51. Calabro, P., Gragnano, F. & Pirro, M. Cognitive Function in a Randomized Trial of Evolocumab. The New England journal of medicine 377, 1996–1997, https://doi.org/10.1056/NEJMc1712102 (2017). 52. Mashek, D. G., Khan, S. A., Sathyanarayan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology (Baltimore, Md.) 62, 964–967, https://doi.org/10.1002/hep.27839 (2015). 53. Rose, M. et al. Arsenic in seaweed—Forms, concentration and dietary exposure. Food and Chemical Toxicology 45, 1263–1267, https://doi.org/10.1016/j.fct.2007.01.007 (2007). 54. Bjorkhem, I. et al. Correlation between serum levels of some cholesterol precursors and activity of HMG-CoA reductase in human liver. Journal of lipid research 28, 1137–1143 (1987). 55. Jones, P. J. H. et al. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 76, 725–746, https://doi.org/10.1093/ nutrit/nuy032 (2018). 56. Annicotte, J. S., Schoonjans, K. & Auwerx, J. Expression of the liver X receptor alpha and beta in embryonic and adult mice. Anat Rec A Discov Mol Cell Evol Biol 277, 312–316, https://doi.org/10.1002/ar.a.20015 (2004). 57. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of neuroscience: the official journal of the Society for Neuroscience 34, 11929–11947, https://doi.org/10.1523/ JNEUROSCI.1860-14.2014 (2014). 58. Kirchgessner, T. G. et al. Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils. Cell Metab 24, 223–233, https://doi.org/10.1016/j.cmet.2016.07.016 (2016). 59. Ries, M. & Sastre, M. Mechanisms of Abeta Clearance and Degradation by Glial. Cells. Frontiers in aging neuroscience 8, 160, https:// doi.org/10.3389/fnagi.2016.00160 (2016). 60. Fu, Y. et al. Apolipoprotein E lipoprotein particles inhibit amyloid-beta uptake through cell surface heparan sulphate proteoglycan. Molecular neurodegeneration 11, 37, https://doi.org/10.1186/s13024-016-0099-y (2016). 61. Alghazwi, M., Smid, S., Musgrave, I. & Zhang, W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Abeta1-42) toxicity and aggregation. Neurochem Int, https://doi.org/10.1016/j.neuint.2019.01.010 (2019). 62. Oh, J. H., Choi, J. S. & Nam, T. J. Fucosterol from an Edible Brown Alga Ecklonia stolonifera Prevents Soluble Amyloid Beta-Induced Cognitive Dysfunction in Aging Rats. Mar Drugs 16, https://doi.org/10.3390/md16100368 (2018). 63. Hu, P. et al. Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydr Polym 139, 150–158, https://doi.org/10.1016/j.carbpol.2015.12.019 (2016). 64. Kenyon, E. M. et al. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water. Toxicology and applied pharmacology 232, 448–455, https://doi. org/10.1016/j.taap.2008.07.018 (2008). 65. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497–509 (1957). 66. Cross, A. K. & Woodroofe, M. N. Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. Journal of neuroscience research 55, 17–23, https://doi.org/10.1002/(sici)1097- 4547(19990101)55:1<17::aid-jnr3>3.0.co;2-j (1999). 67. Sun, Y., Yao, J., Kim, T. W. & Tall, A. R. Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 278, 27688–27694, https://doi.org/10.1074/jbc.M300760200 (2003). 68. Bories, G. et al. Liver X receptor activation stimulates iron export in human alternative macrophages. Circulation research 113, 1196–1205, https://doi.org/10.1161/circresaha.113.301656 (2013). 69. van der Hoorn, J. et al. Low dose of the liver X receptor agonist, AZ876, reduces atherosclerosis in APOE*3Leiden mice without affecting liver or plasma triglyceride levels. British journal of pharmacology 162, 1553–1563, https://doi.org/10.1111/j.1476-5381.2010.01168.x (2011). 70. Rutten, K. et al. The selective PDE5 inhibitor, sildenafil, improves object memory in Swiss mice and increases cGMP levels in hippocampal slices. Behavioural brain research 164, 11–16, https://doi.org/10.1016/j.bbr.2005.04.021 (2005). 71. Sik, A., van Nieuwehuyzen, P., Prickaerts, J. & Blokland, A. Performance of different mouse strains in an object recognition task. Behavioural brain research 147, 49–54 (2003). 72. Ohno, M. et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41, 27–33 (2004). 73. Mulder, M. et al. Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiology of Disease 16, 212–219, https://doi.org/10.1016/j.nbd.2004.01.015 (2004). 74. Steinerman, J. R. et al. Distinct pools of beta-amyloid in Alzheimer disease-affected brain: a clinicopathologic study. Archives of neurology 65, 906–912, https://doi.org/10.1001/archneur.65.7.906 (2008). 75. O’Meara, R. W., Ryan, S. D., Colognato, H. & Kothary, R. Derivation of enriched oligodendrocyte cultures and oligodendrocyte/ neuron myelinating co-cultures from post-natal murine tissues. Journal of visualized experiments: JoVE, https://doi.org/10.3791/3324 (2011). 76. Lütjohann, D. et al. Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. Journal of Lipid Research 43, 1078–1085, https://doi.org/10.1194/jlr.M200071-JLR200 (2002). 77. Bogie, J. F. et al. Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta neuropathologica communications 1, 43, https://doi.org/10.1186/2051-5960-1-43 (2013). 78. Bogie, J. F. et al. Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS One 7, e44998, https://doi. org/10.1371/journal.pone.0044998 (2012). 79. Akkerman, S. et al. Object recognition testing: methodological considerations on exploration and discrimination measures. Behavioural brain research 232, 335–347, https://doi.org/10.1016/j.bbr.2012.03.022 (2012). 80. Dixon, W. J. Ratios involving extreme values. Ann Math Stat 22, 68–78 (1959). 81. Dixon, W. J. Analysis of extreme values. Ann Math Stat 21, 488–506 (1959).-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr4908-
dc.identifier.doi10.1038/s41598-019-41399-4-
dc.identifier.isi000461762600025-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pubmed/30894635-
item.accessRightsOpen Access-
item.validationecoom 2020-
item.fulltextWith Fulltext-
item.fullcitationBOGIE, Jeroen; HOEKS, Cindy; SCHEPERS, Melissa; TIANE, Assia; CUYPERS, Ann; Leijten, Frank; Chintapakorn, Yupyn; Suttiyut, Thiti; Pornpakakul, Surachai; Struik, Dicky; Kerksiek, Anja; Liu, Hong-Bing; HELLINGS, Niels; Martinez-Martinez, Pilar; Jonker, Johan W.; DEWACHTER, Ilse; Sijbrands, Eric; Walter, Jochen; HENDRIKS, Jerome; Groen, Albert; Staels, Bart; Lutjohann, Dieter; VANMIERLO, Tim & Mulder, Monique (2019) Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. In: Scientific reports (Nature Publishing Group), 9 (Art N° 4908).-
item.contributorBOGIE, Jeroen-
item.contributorHOEKS, Cindy-
item.contributorSCHEPERS, Melissa-
item.contributorTIANE, Assia-
item.contributorCUYPERS, Ann-
item.contributorLeijten, Frank-
item.contributorChintapakorn, Yupyn-
item.contributorSuttiyut, Thiti-
item.contributorPornpakakul, Surachai-
item.contributorStruik, Dicky-
item.contributorKerksiek, Anja-
item.contributorLiu, Hong-Bing-
item.contributorHELLINGS, Niels-
item.contributorMartinez-Martinez, Pilar-
item.contributorJonker, Johan W.-
item.contributorDEWACHTER, Ilse-
item.contributorSijbrands, Eric-
item.contributorWalter, Jochen-
item.contributorHENDRIKS, Jerome-
item.contributorGroen, Albert-
item.contributorStaels, Bart-
item.contributorLutjohann, Dieter-
item.contributorVANMIERLO, Tim-
item.contributorMulder, Monique-
crisitem.journal.issn2045-2322-
crisitem.journal.eissn2045-2322-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

45
checked on Apr 22, 2024

Page view(s)

138
checked on Jul 14, 2022

Download(s)

892
checked on Jul 14, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.