Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCOLETTI, Pietro-
dc.contributor.authorPoletto, Chiara-
dc.contributor.authorTurbelin, Clément-
dc.contributor.authorBlanchon, Thierry-
dc.contributor.authorColizza, Vittoria-
dc.date.accessioned2019-05-13T14:29:03Z-
dc.date.available2019-05-13T14:29:03Z-
dc.date.issued2018-
dc.identifier.citationScientific reports (Nature Publishing Group), 8 (Art N° 12786)-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/1942/28217-
dc.description.abstractSeasonal waves of influenza display a complex spatiotemporal pattern resulting from the interplay of biological, sociodemographic, and environmental factors. At country level many studies characterized the robust properties of annual epidemics, depicting a typical season. Here we analyzed season-by-season variability, introducing a clustering approach to assess the deviations from typical spreading patterns. The classification is performed on the similarity of temporal configurations of onset and peak times of regional epidemics, based on influenza-like-illness time-series in France from 1984 to 2014. We observed a larger variability in the onset compared to the peak. Two relevant classes of clusters emerge: groups of seasons sharing similar recurrent spreading patterns (clustered seasons) and single seasons displaying unique patterns (monoids). Recurrent patterns exhibit a more pronounced spatial signature than unique patterns. We assessed how seasons shift between these classes from onset to peak depending on epidemiological, environmental, and socio-demographic variables. We found that the spatial dynamics of influenza and its association with commuting, previously observed as a general property of French influenza epidemics, apply only to seasons exhibiting recurrent patterns. The proposed methodology is successful in providing new insights on influenza spread and can be applied to incidence time-series of different countries and different diseases.-
dc.description.sponsorshipThe work was partially supported by the EC-Health contract no. 278433 (PREDEMICS) to PC, CP and VC and by the French ANR project HarMS-flu (ANR-12-MONU-0018) to PC and VC. PC also acknowledges partial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 682540 - TransMID).-
dc.language.isoen-
dc.rightsOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.-
dc.subject.otherInfluenza; Clustering; Seasonality-
dc.titleShifting patterns of seasonal influenza epidemics-
dc.typeJournal Contribution-
dc.identifier.volume8-
local.bibliographicCitation.jcatA1-
dc.relation.references1. Seasonal influenza facts, WHO. http://www.who.int/mediacentre/factsheets/fs211/en/. 2.Viboud, C. et al. Influenza epidemics in the United States, France, and Australia, 1972–1997. Emerg. Infect. Dis. 10, 32–39 (2004). 3.Viboud, C. et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451 (2006). 4.Huppert, A. et al. Modeling and statistical analysis of the spatio-temporal patterns of seasonal influenza in Israel. PLoS. ONE. 7, e45107 (2012). 5.Bonabeau, E., Toubiana, L. & Flahault, A. The geographical spread of influenza. Proc. Biol. Sci. 265, 2421–2425 (1998). 6.He, D., Dushoff, J., Eftimie, R. & Earn, D. J. D. Patterns of spread of influenza A in Canada. Proc. Biol. Sci. 280, 20131174 (2013). 7.Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–42 (2013). 8.Charaudeau, S., Pakdaman, K. & Boëlle, P.-Y. Commuter Mobility and the Spread of Infectious Diseases: Application to Influenza in France. PLOS ONE 9 (2014). 9.Crépey, P. & Barthélemy, M. Detecting robust patterns in the spread of epidemics: A case study of influenza in the United States and France. Am. J. Epidemiol. 166, 1244–1251 (2007). 10.Minodier, L. et al. Epidemiology and viral etiology of the influenza-like illness in Corsica during the 2012–2013 winter: An analysis of several sentinel surveillance systems. PLoS. ONE. 9, 1–13 (2014). 11.Wenger, J. B. & Naumova, E. N. Seasonal synchronization of influenza in the United States older adult population. PLoS. ONE. 5, e10187 (2010). 12.Sakai, T. et al. Geographic and temporal trends in influenzalike illness, Japan, 1992–1999. Emerg. Infect. Dis. 10, 1822–1826 (2004). 13.Charu, V. et al. Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol. 13, e1005382 (2017). 14.Schanzer, D. L., Langley, J. M., Dummer, T. & Aziz, S. The geographic synchrony of seasonal influenza: A waves across Canada and the United States. PLoS. ONE. 6, e21471 (2011). 15.Balcan, D. et al. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. 106, 21484–21489 (2009). 16.Brownstein, J. S., Wolfe, C. J. & Mandl, K. D. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS. Med. 3, 1826–1835 (2006). 17.Bozick, B. A. & Real, L. A. The role of human transportation networks in mediating the genetic structure of seasonal influenza in the United States. PLoS Pathog. 11, e1004898 (2015). 18.Caini, S. et al. Epidemiological and virological characteristics of influenza B: results of the global influenza B study. Influenza. Other. Respir. Viruses. 9, 3–12 (2015). 19.Mosnier, A. et al. Ten influenza seasons in France: distribution and timing of influenza A and B circulation, 2003–2013. BMC. Infect. Dis. 15, 357 (2015). 20.Paget, J., Marquet, R., Meijer, A. & van der Velden, K. Influenza activity in Europe during eight seasons (1999–2007): an evaluation of the indicators used to measure activity and an assessment of the timing, length and course of peak activity (spread) across Europe. BMC. Infect. Dis. 7, 141 (2007). 21.Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. & Naumova, E. N. Influenza seasonality: Underlying causes and modeling theories. J. Virol. 81, 5429–5436 (2007). 22.Dowell, S. F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis. 7, 369–374 (2001). 23.Edgar, R. S. et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc. Natl. Acad. Sci. 113, 10085–10090 (2016). 24.Shaman, J. & Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA 106, 3243–3248 (2009). 25.Shaman, J., Pitzer, V. E., Viboud, C., Grenfell, B. T. & Lipsitch, M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 8, e1000316 (2010). 26.Towers, S. et al. Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters. PLOS Currents (2013). 27.Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S. & Sugihara, G. Global environmental drivers of influenza. Proc. Natl. Acad. Sci. 113, 13081–13086 (2016). 28.Stark, J. H. et al. Local variations in spatial synchrony of influenza epidemics. PLoS. ONE. 7, e43528 (2012). 29.Valleron, A. et al. A computer network for the surveillance. Am. J. Public Heal. 76 (1986). 30.Homepage, reséau sentinelles. https://websenti.u707.jussieu.fr/sentiweb/?lang=en. 31.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. Springer Series in Statistics (Springer New York Inc., 2001). 32.Rosvall, M. & Bergstrom, C. T. Mapping change in large networks. PLoS. ONE. 5, 1–7 (2010). 33.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B (Methodological) 57, 289–300 (1995). 34.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991). 35.Lysianuk, B. & Tabeaud, M. Vers une signature spatiale de la vulnérabilité épidémiologique en France: l’exemple de la grippe. Physio-Géo 4, 199–212 (2010). 36.Poletto, C., Tizzoni, M. & Colizza, V. Human mobility and time spent at destination: Impact on spatial epidemic spreading. J. Theor. Biol. 338, 41–58 (2013). 37.Keeling, M. J., Danon, L., Vernon, M. C. & House, T. A. Individual identity and movement networks for disease metapopulations. Proc. Natl. Acad. Sci. 107, 8866–8870 (2010). 38.Gautreau, A., Barrat, A. & Barthélemy, M. Global disease spread: Statistics and estimation of arrival times. J. Theor. Biol. 251, 509–522 (2008). 39.Russell, C. A. et al. The global circulation of seasonal influenza a (H3N2) viruses. Science 320, 340–346 (2008). 40.Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, 1–10 (2014). 41.Viboud, C., Nelson, M. I., Tan, Y. & Holmes, E. C. Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission. Philosophical Transactions of the Royal Society B: Biological Sciences 368 (2013). 42.Poletto, C., Boëlle, P.-Y. & Colizza, V. Risk of MERS importation and onward transmission: a systematic review and analysis of cases reported to WHO. BMC. Infect. Dis. 16, 448 (2016). 43.Pastore-Piontti, A. et al. Real-time assessment of the international spreading risk associated with the2014 west african ebola outbreak. In Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, 39–56 (Springer, Cham, 2016). 44.Balcan, D. et al. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): A Monte Carlo likelihood analysis based on human mobility. BMC Med. 7, 45 (2009). 45.Khan, K. et al. Spread of a novel influenza A (H1N1) virus via global airline transportation. N. Engl. J. Med. 361, 212–214 (2009). 46.Fraser, C. et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324, 1557–1561 (2009). 47.Viboud, C., Miller, M. A., Grenfell, B. T., Bjørnstad, O. N. & Simonsen, L. Air travel and the spread of influenza: Important caveats. PLoS. Med. 3, 2159–2168 (2006). 48.Noort, S. P. V. The role of weather on the relation between influenza and influenza-like illness. J. Theor. Biol. 298, 131–137 (2012). 49.Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217–20 (2015). 50.Schnepf, N. et al. High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in france. PLOS ONE 6 (2011). 51.van Asten, L. et al. Early occurrence of influenza a epidemics coincided with changes in occurrence of other respiratory virus infections. Influenza. Other. Respir. Viruses. 10, 14–26 (2016). 52.Weekly bullettin, GROG. http://www.grog.org/cgi-files/db.cgi?code=275 action=bulletin_grog (week 14 season 2009). 53.Weekly bullettin, GROG. http://www.grog.org/cgi-files/db.cgi?code=390 action=bulletin_grog (week 13 season 2012). 54.Influenza in Europe season 2013–2014, ECDC. https://ecdc.europa.eu/en/publications-data/influenza-europe-season-2013-2014. 55.Influenza activity atlas,ECDC. http://atlas.ecdc.europa.eu/public/index.aspx. 56.French population structure, Institut national de la statistique et des études économiques(INSEE). https://www.insee.fr/en/statistiques/2382609?sommaire=2382613. 57.Goeyvaerts, N. et al. Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence. Epidemics 13, 1–9 (2015). 58.Viboud, C. et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS. ONE. 9, 1–12 (2014). 59.Ortiz, J. R. et al. Monitoring Influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu Trends. PLoS. ONE. 6, 2–10 (2011). 60.Vandendijck, Y., Faes, C. & Hens, N. Eight years of the Great Influenza Survey to monitor influenza-like illness in Flanders. PLoS. ONE. 8, 1–8 (2013). 61.Souty, C. & Boëlle, P. Y. Improving incidence estimation in practice-based sentinel surveillance networks using spatial variation in general practitioner density. BMC Med. Res. Methodol. 1–8 (2016). 62.Souty, C. et al. Improving disease incidence estimates in primary care surveillance systems. Popul. Health Metr. 12, 19 (2014). 63.Costagliola, D. et al. A routine tool for detection and assessment of epidemics of influenza-like syndromes in France Dominique. Am. J. Public Health 81, 97–98 (1991). 64.Homepage, Institut national de la statistique et des études économiques(INSEE). http://www.insee.fr. 65.Homepage, IATA. http://www.iata.org/Pages/default.aspx. 66.Klein Tank, A. M. G. et al. Daily dataset of 20th-century surface air temperature and precipitation series for the european climate assessment. Int. J. Climatol. 22, 1441–1453 (2002). 67.Homepage, European Climate Assessment and Dataset project. http://eca.knmi.nl/. 68. European Influenza Surveillance Network (EISN), ECDC. https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/eisn.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr12786-
local.type.programmeH2020-
local.relation.h2020682540-
dc.identifier.doi10.1038/s41598-018-30949-x-
dc.identifier.isi000442607800015-
item.fullcitationCOLETTI, Pietro; Poletto, Chiara; Turbelin, Clément; Blanchon, Thierry & Colizza, Vittoria (2018) Shifting patterns of seasonal influenza epidemics. In: Scientific reports (Nature Publishing Group), 8 (Art N° 12786).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.contributorCOLETTI, Pietro-
item.contributorPoletto, Chiara-
item.contributorTurbelin, Clément-
item.contributorBlanchon, Thierry-
item.contributorColizza, Vittoria-
item.validationecoom 2019-
crisitem.journal.issn2045-2322-
crisitem.journal.eissn2045-2322-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
shifting_patterns.pdfPublished version3.07 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

13
checked on Oct 6, 2024

Page view(s)

426
checked on Sep 5, 2022

Download(s)

470
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.